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In this dissertation, I explore the implications of various forms of frictions on market outcomes.

Specifically, I look at search frictions in two-sided markets, geographic frictions in a healthcare

market, and the use of a machine learning approach in the presence of regulatory frictions.

In the first chapter, I leverage the entry of a high-speed train system in South Korea as a

natural experiment to establish the causal effect of competition between hospitals on health

care quality and consumer welfare. Using a difference-in-differences estimator, we examine

the effects of competition on hospitals depending on their proximity to train stations, notably

how increased competition impacts health outcomes as measured by 30-day mortality rates.

Our results suggest that increased competition leads to an improvement in the quality of

clinical care. To evaluate the overall impact of the HST on patient welfare, we estimate a

structural model of hospital choice, allowing for a flexible formation of patients’ consideration

sets. We find that patients living near a HST station experience an improvement in welfare

arising from the reduction in travel time as well as improvements in hospital quality. Patients

living further away from HST stations also experience an improvement in welfare although

they do not gain from the reduced travel time due to the improvement in the quality of

treated hospitals. We also find that the HST can have a beneficial impact on patient health
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by facilitating patients’ sorting to better hospitals, even while holding quality of clinical care

constant.

In the second chapter, I study the impact of search frictions and preferences on the formation

of a match in two-sided markets. Since agents on both sides have private preferences regarding

each others’ characteristics, forming a match based on mutual compatibility requires extensive

costly search. To better understand the relative impact of search frictions and preferences

on match outcomes, we use data from a field experiment conducted on an online dating

platform wherein randomly selected users are given the ability to know upfront a piece of

information about the private preference of the opposite gender (information which otherwise

should have been searched for). We find descriptive evidence suggesting that reducing search

frictions through the provision of information may lead to less sorting between matched

couples in terms of various characteristics such as race and education level. To investigate the

relative contribution of search frictions and preferences on assortative matching, we develop

and estimate a model that incorporates both costly search and preference heterogeneity

across users. Identification of our model relies on the variation in information caused by

the experiment as well as the exclusion restriction to separately identify preferences from

costs. Our estimation results reveal that frictions play a significant role in shaping matching

outcomes. Using model estimates, we simulate matches under various environments, including

the Gale-Shapley protocol. We find that removing frictions leads to significantly less sorting

between couples. We also find that frictions in our platform lead to significant departure

from efficiency. These results highlight the importance of platform designs that aim to reduce

search frictions. In addition, with one-third of the marriages in the U.S. beginning online,

this paper shows how the design of an online platform can contribute to diversity, which can

in turn alleviate persistent social inequality.
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In the third chapter, I study how we can use machine learning methods to overcome challenges

faced by firms in the presence of restrictive privacy regulations. The ever-increasing volume

of consumer data provide unprecedented opportunities for firms to predict consumer behavior,

target customers, and provide customized service. Recent trends of more restrictive privacy

regulations worldwide, however, present great challenges for firms whose business activities

rely on consumer data. We address these challenges by applying the recently developed

federated learning approach - a privacy-preserving machine learning approach that uses a

parallelized learning algorithm to train a model locally on each individual user’s device.

We apply this approach to data from an online retailer and train a Gated Recurrent Unit

recurrent neural network to predict each consumer’s click-stream. We show the firm can

predict each consumer’s activities with a high level of accuracy without the need to store,

access, or analyze consumer data in a centralized location, thereby protecting their sensitive

information.

xiii
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Chapter 1

Hospital Competition and Quality:

Evidence from the Entry of the

High-Speed Train in South Korea

1.1 Introduction

It is important to understand how competition affects service quality in the health care

industry. However, empirical evidence on this topic is mixed. Policies to improve the efficiency

and the quality of health care have been introduced in several countries, but their effectiveness

remains ambiguous. Difficulty in assessing the impact of competition is partly due to the fact

that competition in health care markets is geographically based, as pointed out by Propper

et al. (2008) and Gaynor et al. (2013a).

Many existing studies rely on cross-sectional and over time variation in hospital market

structure to identify the impact of competition on service quality of hospitals. However, the

1
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market structure may be endogenous because the quality of incumbent hospitals and potential

entrants may affect their strategic entry and exit decisions, hence the market structure.

Other studies exploit changes in health-related policies, which are exogenous shocks that

spur competition. Yet the analysis are often complicated by the fact that when policies are

health-related, they may affect the incentives of the agents involved in ways unanticipated by

researchers. If such incentive changes are not accounted for in the analysis, the conclusions

may be biased.

In this article we exploit the entry of high-speed train (HST henceforth) system in South

Korea to examine the effects of competition on the quality of health care. As of April 2004,

Korea Train eXpress (KTX) started operating in South Korea, connecting most major cities

by high-speed rail. An important aspect of the South Korean healthcare industry is that

patients have the full freedom to go to any hospital of their choice and prices are fixed.

The introduction of the HST represents an exogenous shock to the healthcare market in

that it greatly reduced patients’ travel time, and enabled patients to consider hospitals that

were previously unreachable due to long travel distances, thereby increasing substitutability

between hospitals. According to news reports, the proportion of rural patients choosing the

top four largest hospitals in Seoul increased from 41.2% in 2002 to 48.5% in 2007 as a result

of the HST.1 In addition, when Kim et al. (2008) randomly surveyed HST passengers arriving

in Seoul and asked them: “Have you used the HST to seek treatment in hospitals located in

Seoul at least once?” 36% (out of 561 passengers) responded “Yes”. The news reports and the

survey provide some evidence that patients indeed use the HST for medical purposes. Clearly

the reduction in travel time facilitates access to better hospitals, implying that hospitals that

previously competed locally are now competing with those located further away.
1Source: http://news20.busan.com/controller/newsController.jsp?newsId=20110804000124 (in Korean),

accessed on July 10, 2018.

2
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We use the fact that the HST does not extend to all regions, thereby increasing competition

only for hospitals that are located sufficiently close to HST stations. In the current context,

there are treated hospitals - hospitals that are located close to a HST station, as well as

treated patients - patients that live close to a HST station (more discussion on this subject

in the next section). Although our primary interest is to study the impact of competition on

hospital quality, we distinguish patients in the treated group from those in the control group

so as to provide descriptive evidence on patients’ responses to the entry of the HST, as well

as to investigate differential changes in patients’ welfare and health outcomes based on where

they live.

We begin by providing descriptive evidence to show that patients in the treated group traveled

further distances to visit a hospital after the entry of the HST, whereas we do not see such

a pattern for patients in the control group, suggesting that patients responded differently

to the entry of the HST depending on the proximity from their home to the HST station.

Using a difference-in-differences estimator, we then examine the impact of increased hospital

competition on the hospital clinical quality, as measured by 30-day risk-adjusted mortality

rates following admissions for a surgery. Specifically, we look at all surgeries that were

conducted during this period where mortality rate can be used as a measure of quality of

clinical care.We find that increased competition improves the clinical quality: Hospitals

affected by the entry of the HST experience a decrease in adjusted mortality rates.

We then estimate a structural model of hospital choice and use the model estimates to

quantify the impact of the entry of the HST on patient welfare. We find that patients living

in treated regions experience an improvement in welfare due to both reduction in travel

costs as well as enhanced clinical quality. Although patients living in control regions do not

benefit from reduced travel costs (because there is no HST station near their homes), they

also experience an increase in welfare because many of them choose to go to hospitals that

3
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are affected by HST. We further use the model estimates to measure the effect of patients’

sorting to better hospitals (due to lower travel costs) on their health outcomes (survival

from the surgery). This is implemented by comparing the number of death in the post-HST

period to a counterfactual scenario when the HST is removed. From this analysis we find

that a substantial number of lives can be saved annually with the HST as a result of patients

sorting to better hospitals. Our research contributes to the literature on hospital competition

and quality in health care. The most influential study of health care markets with fixed

prices is Kessler and McClellan (2000), who examine the impact of market concentration on

both costs and mortality rates for US Medicare Acute Myocardial Infarction (AMI) patients.

They find that in the 1980s competition led to higher costs but lower mortality rates, but

find that after 1990, competition resulted in both lower costs and lower mortality rates,

and conclude that competition is unambiguously welfare improving post-1990.2 Exploiting

the 2006 English pro-competitive policy shift, Gaynor et al. (2013a) study the impact

of the competition on quality (as measured by death rates from heart attack) as well as

other measures of quality such as hospital productivity and expenditures (hospital operating

expenditures and expenditures per admission) using a difference-in-differences research design.

They find that increased competition improves the quality of clinical care without increasing

expenditures.3 Leveraging the same reform, Gaynor et al. (2016) find that patients became

more responsive to clinical quality post-reform, and that hospitals responded to changes in

demand by improving quality.

Some other papers that study the relationship between competition and healthcare quality,

however, find opposite results. Using Medicare data for AMI and pneumonia patients,

Gowrisankaran and Town (2003) also estimate the impact of hospital market structure on
2Other papers such as Shen (2003) finds mixed effects, and Shortell and Hughes (1988) find no effects of

competition on quality using Medicare patient data.
3For measures of hospital productivity, they use simple measure of labor productivity- the number of

admissions per clinical staff.

4
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mortality rates for Medicare patients and find that mortality rate is worse for patients

treated in hospitals with more intense competition. This is in contrast to the classical

theoretical literature that increased competition under fixed prices results in improved quality.

Gowrisankaran and Town (2003) provide a possible explanation: If the profit margin on

Medicare patients is sufficiently low, then greater competition for these Medicare patients

can cause the hospital to focus on more profitable HMO patients and give up on investing in

Medicare patients. In fact, Brekke et al. (2011) show theoretically that under fixed prices,

increasing competition through either lower transportation costs (increased substitutability)

or a higher number of hospitals may have ambiguous effects on quality if profit margins

are low or negative, or if hospitals deviate from profit-maximizing behavior. Several papers

find further empirical evidence that support the results of Gowrisankaran and Town (2003)

(Propper et al. (2004), Propper et al. (2008), Lewis and Pflum (2017), Colla et al. (2016)).

Leveraging the 1991 health reform in the UK National Health Service, Propper et al. (2004)

find that the relationship between competition and AMI mortality rates are negative. Propper

et al. (2004) investigate the changes further and find that increased competition reduces

waiting times, suggesting that hospitals facing more competition reduce services that affect

mortality rates (that are unobserved) in order to increase other activities which are better

observed by the health-care buyers. Findings of Lewis and Pflum (2017) also suggest that in

response to competition, hospitals divert the resources away from investing in clinical quality,

which is imperfectly observed, in order to increase investment in amenities that are better

observed by the patient.4

Our research advances the existing literature in health economics by studying the effects of

competition with fixed prices following an exogenous shock. Because the shock (entry of HST)
4In contrast to Medicare patients, however, both Gowrisankaran and Town (2003) and Lewis and Pflum

(2017) find that competition improves clinical quality for HMO patients. Lewis and Pflum (2017) explain that
because HMOs can better evaluate the clinical quality of hospitals than individual patients, hospitals have
higher incentives to improve clinical quality levels when competing for inclusion in HMO provider networks.

5
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that increases competition is orthogonal to hospital market structure or any other aspect of

healthcare, our setting provides a unique and novel natural-experiment that helps answer our

research question. Furthermore, because the HST only reaches certain regions of the country,

not only can we do a pre-post analysis, but we are also able to explore the variations in the

degree of treatment for more convincing insights. To the best of our knowledge, Gaynor et al.

(2013a) and Propper et al. (2008) are the only papers that employ difference-in-differences

approach to study this question.

Our research is also the first in which the competition is driven by a shock that reduces travel

costs. In their theoretical model, Brekke et al. (2011) measure intensified competition in two

ways; more hospitals in the market, and lower transportation costs (increased substitutability

between hospitals). The importance of tradeoff between quality and travel time that patients

face is highlighted in Tay (2003). This tradeoff between quality and travel time is what

gives market power to hospitals. The entry of the HST reduces the travel time faced by the

patients, thereby alleviating this tradeoff. As long as hospital quality remains unchanged,

the introduction of the HST therefore should be unambiguously welfare improving. We show

that this is indeed the case by decomposing the changes in patient welfare resulting from

changes in travel time and changes in mortality rates.

Our research is also closely related to the literature on constrained choice sets. Ho (2006),

Dafny et al. (2013) and Gaynor et al. (2016) also analyze the effects of removing choice

constraints within the health care context. Our setting is more similar to that of Gaynor et

al. (2016) in which the patients’ choice sets are unobserved. To exploit the unique feature of

our setting in which the entry of the HST increased the number of hospitals in a patient’s

consideration set, we adopt a modeling approach used in the geography/transportation

6



www.manaraa.com

literature. Specifically, we explicitly model the formation of consideration sets for the post-

HST period when individuals have limited time resource, and evaluate the welfare effects of

the removal of the HST in a counterfactual scenario.

Finally, our research adds to the fast growing literature on the economic impacts of trans-

portation infrastructure (Benerjee et al. (2012); Qin (2016); Donaldson (2018); Heuermann

and Schmieder (2018); Qin et al. (2018)). While these papers mainly study the impact

on economic activities that are directly affected by the new transportation system, such

as inter-regional trade, per capita GDP, co-opetition between transportation modes, and

housing/commute decisions, our paper looks at the unexpected externality caused by the

HST.

The rest of this paper is structured as follows. In the next section we describe the relevant

aspects of the industry; Section 1.3 describes the data; In Section 1.4 we describe our

estimation strategy and present the results. Section 1.5 outlines the structural demand model,

and Section 1.6 presents the estimation results. Section 1.7 analyzes the welfare effects of the

entry of the HST and Section 1.8 concludes.

1.2 Industry Details

1.2.1 Health Care Industry

National Health Insurance (NHI) program in South Korea is a compulsory single-payer public

insurance system which covers the entire resident population. The social insurance system of

South Korea was established in 1977, and initially covered only 8.79% of the population, but

expanded to approximately 97% of the population by 1989. It operated as a multi-insurance

fund system with more than 370 insurers until July 2000, when the funds were integrated to

7
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form a single-payer system. It is managed by a single insurer, the National Health Insurance

Corporation (NHIC), and is supervised by the Ministry of Health, Welfare and Family Affairs

(MIHWFA). The Health Insurance Review and Assessment Service (HIRA), also supervised

by MIHWFA, reviews the cost and healthcare benefits and evaluates the appropriateness of

health care services provided by hospitals. The system is funded by compulsory contributions

from the entire resident population and government subsidies. The amount paid as NHIC

contributions by an individual depends on his income and wealth; the elderly and disabled

pay less.

As opposed to public-sector dominant healthcare financing, healthcare delivery in South

Korea is predominantly provided by the private sector: approximately 90% of hospitals are

private institutions. Since the launch of the NHI program, private providers are not allowed

to opt out from the program. This is to ensure that private health-care providers respond to

changes in demand which the public health insurance has brought about.

The NHIC negotiates the level of medical service fees annually with provider associations.

The fee schedule includes fees for all medical services and materials including drugs, as well

as remuneration of providers for the services they provide. Patients are responsible for any

co-payments applicable to the medical services they received, and the NHIC reimburses

healthcare providers the share of medical costs not borne directly by the patient on the basis

of the fee schedule. Fee regulation has been the subject of recurrent complaints by providers

in South Korea, who claim that they are not adequately compensated for their services as a

result of historically low levels of NHI fees, which did not keep pace with inflation until the

mid-1990s.

8
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In fact, according to a report published by Health Insurance Review Assessment (HIRA) in

2006, the fixed fee schedule covers on average only 73.9% of the costs incurred by providers.5

Differential margins for different medical services lead physicians to provide more of those

services with higher margins. Specialties of which services are paid relatively generously

attract a greater number of applicants for the residency training. Popular specialties in-

clude psychiatry, ophthalmology and dermatology, whereas radiology, thoracic surgery and

anesthesiology are the least popular. Moreover, to mitigate the effects of negative margins,

physicians encourage patients to receive uninsured medical services, for which hospitals have

the full freedom to set their own price.

Healthcare delivery system in South Korea is classified into three tiers: primary, secondary,

and tertiary care. Although NHI service flow is designed to progress from primary to secondary

to tertiary care, patients have the complete freedom to choose a healthcare provider at any

level within this system with some financial incentives. To achieve an efficient distribution

of limited healthcare resources, outpatient insurance coverage largely depends on the tier

of the hospital. Patients must be referred by primary or secondary care hospitals to receive

outpatient treatment in tertiary hospitals, in which case 40% of their bills are covered by

insurance (Otherwise, they can expect to pay 100% of the bill). The insurance coverage

is identical at all levels of hospitals for inpatient care, where patients pay 20% of medical

expenses. In our analysis we only focus on inpatient surgical treatments.

1.2.2 Entry of High-Speed Train

South Korea’s HST system, Korea Train eXpress (KTX), commenced commercial operations

on April 1st 2004, substantially altering patterns of long-distance travel. Construction of
5Source: http://www.medicaltimes.com/News/39629, accessed on November 30, 2018

9



www.manaraa.com

Notes: This map displays first-stage HST lines. Shaded areas represent regions that are treated - districts
whose centroids are located within 15 miles of the HST station.

Figure 1.1: Treated Regions
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the HST system occurred in two stages.6 The first-stage construction involved building

Gyeongbu HST Line connecting Seoul to Daegu and electrifying the existing Gyeongbu

Line connecting Daegu-Busan, as well as electrifying the existing Honam Line connecting

Daejeon-Mokpo.7 The second-stage HST system, which involved the construction of the

new Gyeongbu HST line connecting Daegu to Busan replacing the existing electrified tracks,

went into service in November of 2010. In this paper we only focus on the first-stage HST

system. Although the launch of the second-stage HST system enabled the HST to reach full

speed through Daegu-Busan corridor, this shock was much smaller in magnitude compared

to the shock generated by the first-stage HST system. Figure 1 displays two HST lines of

the first-stage HST system, Gyeongbu Line (blue) connecting Seoul-Busan and Honam line

(green) connecting Seoul-Mokpo. We define a “treatmented area” as an area located within 10

miles of the HST station. Shaded areas in Figure 1 represent treated areas whose centroids

are within 10 miles of a HST station.8

At the time of the launch in 2004, the HST operated 128 times per day (94 times on Gyeongbu

Line, and 34 times on the Honam Line), and the daily frequency increased to 163 in the

following years. HST fares were fixed and kept low, at approximately 55% of the corresponding

air fares for the same routes, to encourage the use of the HST.9 The HST system has reduced
6Note that here we are referring to the construction of Gyeongbu HST system. The construction of

additional HST systems were completed only after 2015. Additional electrified (existing) lines were added by
the end of 2010.

7Newly constructed links included 51.6 mi of viaducts and 47.0 mi of tunnels. Electrification of the existing
rail comprised of 82.5 mi across Daegu to Busan, 12.9 mi across Daejeon, and 164.3 mi from Daejeon to Mokpo
and Gwangju. First stage Gyeongbu HST stations include Seoul Station, Gwangmyeong, Cheonan-Asan,
Daejon, Dongdaegu stations, and the electrified Gyeongbu line connecting Dongdaegu and Busan includes
Miryang, Gupo and Busan stations. Honam line includes Yongsan station, Seodaejeon, Dungyae, Nonsan,
Iksan, Gimje, Jeongeub, Jangseong, Songjeongni, Gwangju, Naju, and Mokpo stations. There exists a depot
for HST along the Gyeongui Line at Haengsin station. Thus some HST services continue beyond Seoul and
Yongsan station and terminate at Haengsin station. For detailed information on HST services see Cho and
Chung (2008).

8The robustness of our 10-mile definition of treatment is discussed in Appendix C
9In addition to low regular prices, various discounts (60% off the regular passes and 20% off the reserved

tickets) were available to attract as many passengers as possible.
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the travel time from Seoul to Busan from more than 5 hours by car to 2 hours 40 minutes by

train.

1.3 Data

We rely on a number of data sources at the patient, hospital and city-county-district level.10

Our patient data comes from the National Health Insurance Services (NHIS) which is a health

insurance claims dataset collected by the single insurer system NHI (NHIS-2018-2-139). Our

data are of a nationally representative random sample, which accounts for approximately 2%

of the entire South Korean population for years 2003 to 2007. The data contain patient-level

information on medical procedures received at the hospitals. Detailed information on patient

demographics, diagnosis, patients’ location at the district level11 and hospital choice are

observed, as well as the date of admission, number of inpatient treatment days, and the

month/year of the patient’s death.

The identity of the hospitals in the NHIS dataset are anonymized and hospital location is

observable only at the provincial level. To get a more precise location of the hospitals, which

is essential for our analysis, we combine the NHIS dataset with that obtained from HIRA

(Health Insurance Review Assessment) which, in addition to the hospital characteristics in

the NHIS dataset, also provides hospital location at the district level12. The identity of the
10South Korea is made up of 17 first-tier administrative divisions (province level). These are further

subdivided into cities (si), counties (gun), districts (gu), towns (eup), townships (myeon), neighborhoods
(dong) and villages (ri). Once a country attains a population of at least 150,000, it becomes a city. Cities
with a population of over 500,000 are subdivided into districts. Districts are then further divided into
neighborhoods (dong). Cities with a population of less than 500,000 are directly diveded into neighborhoods
(dong).

11More precisely, patients’ locations are at the city-county-district level because some counties are not
populated enough to qualify for a city and hence are not sub-divided into districts.

12For the same reasons as discussed in footnote 11, hospitals’ locations are at the city-county-district level
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Pre-HST Post-HST
Mean SD Min Max Mean SD Min Max

Control Hospitals (N = 55 )

Total admissions 156 138.1 13 598 193.1 188.0 13 789
Hospital beds 567.3 296.3 99 1256 567.3 296.3 99 1256
Mortality rates 0.050 0.041 0 0.280 0.052 0.050 0 0.308

Treated Hospitals (N = 112)

Total admissions 243.9 256.4 17 1501 290 313 13 1943
Hospital beds 703.2 453.9 121 2993 703.2 453.9 121 2993
Mortality rates 0.043 0 0.176 0.040 0.040 0.029 0 0.176

Notes: hospital-treatment in this table is defined as being located within 15-miles of train stations

Table 1.1: Summary Statistics: Hospital Characteristics

hospitals in the HIRA dataset is also anonymized, but we are able to match this dataset to

NHIS dataset using hospitals characteristics.

Our sample selection process is as follows: To study the causal impact of increased competition

on the quality of clinical care, we define January 2003 to March 2004 as the pre-HST time

period and January 2006 to March 2007 as the post-HST time period. The data are collapsed

into pre- and post-HST period.

We focus on patients who underwent a surgery. Specifically, we consider all surgeries that

were conducted during this period that resulted in at least one death. Since our data is a 2%

sample of the entire population, 1 death in the data can be inferred as 50 deaths in the entire

population. Ideally we want to look at patients suffering from one specific illness, or who

underwent one specific type of surgery in order to minimize the contamination of hospital

quality (mortality rates) with patient selection.13 Constraining our analysis to a single type
13Gowrisankaran and Town (2003) look at pneumonia patients, Kessler and McClellan (2000), Propper et

al. (2004) look at acute myocardial infarction (AMI) patients, and Gaynor et al. (2016) look at patients
receiving coronary artery bypass grafting (CABG) surgery.
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Control Patients Treated Patients
Pre-HST Period Post-HST Period Pre-HST Period Post-HST Period

(Fractions of) Mean SD Mean SD Mean SD Mean SD
Female 0.490 0.450 0.486 0.500 0.497 0.500 0.483 0.500
Ages 0-19 Years 0.150 0.357 0.147 0.354 0.149 0.356 0.155 0.362
Ages 20-39 Years 0.188 0.391 0.167 0.373 0.213 0.410 0.177 0.382
Ages 40-59 Years 0.290 0.454 0.290 0.454 0.300 0.458 0.303 0.460
Ages 60-79 Years 0.328 0.470 0.344 0.475 0.299 0.458 0.320 0.466
Ages 80 Years + 0.044 0.204 0.052 0.221 0.039 0.194 0.044 0.206
Income Group 0-1 0.084 0.277 0.077 0.267 0.068 0.251 0.067 0.250
Income Group 2-4 0.198 0.399 0.188 0.391 0.186 0.389 0.179 0.383
Income Group 5-7 0.296 0.456 0.286 0.452 0.295 0.456 0.289 0.453
Income Group 8-10 0.422 0.494 0.449 0.497 0.451 0.498 0.465 0.499
Comorbidity 0.873 0.333 0.847 0.360 0.854 0.353 0.844 0.363
Nobs 18,639 22,431 17,252 20,664

Notes: patient-treatment in this table is defined as living within 10-miles of train stations

Table 1.2: Summary Statistics: Patient Characteristics

of surgery, however, leaves us with too few observations (too few patients as well as too few

hospitals). Limiting our attention to only one “category” of surgery (e.g. cardiovascular

surgery) also leaves us with too few observations. To attenuate the contamination of hospital

quality from pooling patients across multiple types of surgeries, we control for the riskiness of

each type of surgery as well as the patients’ diagnosed disease when obtaining the adjusted

mortality rates. Details of this procedure are provided in the Appendix A.

The key feature of our setting is that the entry of HST enables patients to exercise choice

among alternatives with different travel distances. To take advantage of this feature, we

drop the following patients who were less likely to exercise choice based on hospital location:

First, patients who arrived at the hospital via ambulance because the emergency ambulance

usually takes patients to a nearby hospital. Second, patients who arrived at the hospital via

intra-hopital transfer as it is the physician who makes the choice of the hospital in this case.

Next, we drop patients living on islands (Jeju and Ulleng Islands, as well as Shin-ahn and

Ong-jin Gun) because we are unable to calculate the travel time to hospitals by car and ferry

14
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for these patients, a necessary component for estimating our demand model and performing

counterfactuals.

We drop outpatient admissions, where the patient stayed at the hospital less than 24 hours to

ensure that the patients in our sample are sick enough. Following Tay (2003) and Ho (2006),

we exclude hospitals with fewer than 10 admissions per period, and we only keep hospitals

that appear in both pre- and post-HST periods to facilitate the comparison of hospital quality.

Our final sample consists of 167 hospitals and 78,986 patients.

In our setting, there are “Treated Hospitals” and “Treated Patients”. “Treated Hospitals” are

hospitals that are located within 15 miles of the HST station, and “Treated Patients” are

patients who live within 15 miles of the HST station. In our main analysis, we define Treated

Hospitals as hospitals that are located within 15 miles of the HST station unless otherwise

specified. For Treated Patients, we show descriptive statistics using both 10 mile and 15

mile definitions of treatment. In the Appendix, we show that our results hold consistently

even if we change the definition of treatment as being located within 5 miles, 10 miles, 20

miles. Table 1 and Table 2 provides summary statistics of hospital characteristics and patient

characteristics, respectively.14

In Table 1.3 we present descriptive evidence on changes in patients’ travel patterns following

the entry of HST. Panel A.1 reports the average travel distances (in miles) before-and after

the introduction of HST, defining patients living within 10 miles of the HST station as

treated. While there are no changes in travel distances for patient living in control regions,

patients living in treated regions clearly traveled further distances after the entry of the HST

(approximately 8 percent increase post HST). These differences become more salient when
14In our data we observe up to two diagnosis per patient, main diagnosis and sub-diagnosis. Since not all

patients have a sub-diagnosis, we construct a comorbidity dummy variable which takes value 1 if a patient
has a sub-diagnosis and 0 otherwise.
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we only focus on patients living in non-Seoul areas (Panel A.2): while there is no difference

in travel distance for patients living in control regions, the average travel distance increased

by 11 percent for patients living in treated regions.15 While the absolute difference in travel

time for treated patients before and after the HST may seem small, this change account to

approximately 10% increase in proportion of patients traveling beyond 50 miles (see Appendix

D)

Our final sample excludes patients who transferred from other hospital and who arrived at a

hospital via ambulance because these patients are less likely (if any) to exercise choice. If

the increase in travel distance for patients living in treated regions is a consequence of the

entry of the HST, we should not see changes in travel distance for patients who arrived at

hospitals via transfer or ambulance because these patients did not take the HST. Table 3

Panel A.3 reports the mean travel distances for patients who arrived at hospitals via transfer

or ambulance. As expected, we do not see changes in travel distance for patients living in

treated regions.

Panel B reports the average travel distances by period and region, defining patients living

within 15 miles of the HST station as treated. The patterns reported in this table are

consistent with those in Panel A.

15More precisely, we exclude Seoul and the surrounding metro area.
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Table 1.3: Descriptive Evidence of Changes in Travel Distance

Control Patients Treated Patients
Pre-HST Post-HST Pre-HST Post-HST

Distance Traveled Mean Mean %∆ Mean Mean ∆
(st.dev) (st.dev) t-stat (st.dev) (st.dev) t-stat

Panel A: Patient Treatment: within 10 miles of train station
A1. Excluding ambulance and transfer patients

27.338 27.825 1.78% 13.713 14.781 7.79%
(43.183) (43.295) t: 1.135 (36.365) (37.602) t: 2.797**

Nobs 18,639 22,431 17,252 20,664
A2. Excluding patients living in Seoul

29.601 29.704 0.35% 21.957 24.458 11.4%
44.344 44.313 t: 0.224 48.372 50.821 t: 3.192***

Nobs 16,867 20,520 7,587 8,557
A3. Ambulance and transfer patients

22.112 22.363 1.14% 11.096 9.3890 -15.4%
(36.525) (35.887) t: 0.114 (34.202) (25.805) t: 1.041

Nobs 387 853 478 901

Panel B: Patient Treatment : within 15 miles of train station
B1. Excluding ambulance and transfer patients

33.071 33.472 1.21% 13.334 14.128 5.95%
(46.240) (46.425) t: 0.747 (34.746) (35.567) t: 2.485**

Nobs 13,556 16,580 22,335 26,515
B2. Excluding patients living in Seoul

33.071 33.472 1.21% 19.963 21.113 5.76%
(46.240) (46.425) t: 0.7471 (44.109) (45.381) t: 1.9593*

Nobs 13,556 16,580 10,898 12,497
B3. Ambulance and transfer patients

28.190 25.529 -9.44% 10.652 10.079 -5.38%
(39.746) (37.536) t: 0.953 (32.310) (26.379) t: 0.396

Nobs 265 638 600 1,116
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1.4 Difference-in-Differences Estimation and Results

In this section we study the impact of hospital competition on the quality of clinical care using

a difference-in-differences approach. Specifically, we compare pre- and post-HST mortality

rates of hospitals that are located near the HST stations, using hospitals located further away

from the HST stations as the control group. Figure 2 plots the hospital-level raw mortality

rates by quarter for pre- and post-HST periods.16 From this figure, we can see that mortality

rates at the treated and control hospitals roughly follow a similar trend.

We first briefly describe our estimation strategy, and then proceed to describe the issue

concerning the use of raw mortality rates as a measure of hospital clinical quality, followed

by a description of how to resolve this problem. We then report our estimation results.

1.4.1 Difference-in-Differences

We analyze the impact of hospital competition on the quality of clinical care using difference-

in-differences estimator. Specifically, we estimate the equation as below:

Yjt = β0 + β1Postt + β2Treatedj · Postt + µj + εjt (1.1)

where Yjt denotes the quality of clinical care at hospital j in period t, Postt is a dummy

variable which equals 1 if post-HST period, Treatedj is a dummy variable which takes value 1

if hospital j is located in a treated region, Treatedj ·Postt is an interaction term of Treatedj
16In the following analysis, we collapse all the pre-HST and post-HST quarters into a single pre-HST

and post-HST period, respectively. If we calculate hospital-level mortality rates at the quarter level, many
hospitals are left with too few admissions per period, which makes estimating adjusted mortality rates
difficult.
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Figure 1.2: Trend of hospital-level mortality rates

and Postt. We control for hospital-specific characteristics with hospital fixed effects, µj.

Coefficient β2 captures the impact of increased competition on Yjt and is of primary interest.

1.4.2 Adjusted Mortality Rate

Using raw mortality rates as a measure of quality is problematic due to patient selection

bias: severely ill patients may choose high quality hospitals. The existing literature address

this selection bias by obtaining adjusted mortality rates (Gowrisankaran and Town (1999),

Gowrisankaran and Town (2003), Kessler and McClellan (2000), Geweke et al. (2004), Tay

(2003)). Specifically, Gowrisankaran and Town (1999) propose controlling for patients’ severity

of illness with an instrumental variables (IV) framework using geographic location data, i.e.

distance from each patient to all hospitals. Although the distance to the chosen hospital will

be correlated with the patient’s severity of illness, and hence cannot be a valid instrument,

where a patient chooses to live relative to all hospitals is uncorrelated to patient’s severity of

illness. This assumption is commonly used in empirical models of hospital choice, e.g. Kessler
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and McClellan (2000), Gowrisankaran and Town (1999), Capps et al. (2003), Gaynor and

Vogt (2003), Ho (2009), Beckert et al. (2012).

In our setting, the HST facilitates long-distance travel for severely ill patients, and hence the

degree of patient selection may be aggravated as a result of the entry of the HST. To allow

for this change in the degree of patient selection resulting from the reduction in travel time,

we use different sets of instruments in pre- and post-HST periods. We follow Gowrisankaran

and Town (1999) but use travel time rather than travel distance from each patient to all

hospitals as instruments for hospital choice. This is to account for the changes in travel time

for patients living sufficiently close to the HST station in post-HST era (because even with

HST, the actual distance to the hospitals does not change - what changes in the post-HST

period is the travel time).

Specifically, we obtain an adjusted mortality rate by estimating a linear probability model

where we regress an indicator for whether a patient dies approximately 30 days following the

admission (conditional on choosing hospital j ) on a set of hospital/time period dummies

and patient’s observed characteristics.17 The mortality of patient i in period t is given as

µit = ψ
′
ci + γ

′
hi + sit + ηit (1.2)

where µit is a dummy variable that denotes the death of patient i within 30 days of the

admission, ci is a vector of dummy variables (ci1pre, ..., ciJpre, ci1post, ...ciJpost) where cijt equals

1 if patient i chooses hospital j in period t, hi is a vector of patient characteristics that

can affect mortality, sit is unobserved (by the researcher) severity of illness, and ηit is an

i.i.d. normal error term. The parameter vectors to estimate are ψ and γ. With the linear

probability model, the elements of estimated fixed effects ψ̂ are interpreted as the incremental
17The reason for why we use a linear probability model is because it is difficult to use non-linear models in

the presence of endogenous variables. Detailed explanation on this is discussed in and Town (1999).
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probability of death from choosing a particular hospital conditional on observed health status,

and is used as our measure of quality of care. The coefficient vector γ captures the impact of

patients’ observed health status on the probability of death. We will refer to the estimated

measure of quality of care, ψ̂ as the adjusted mortality rate. Note that we are slighltly abusing

the terminology as ψ̂ is not adjusted mortality probabilities per se, but is the hospital’s

impact on patients’ mortality conditional on observed characteristics. Nevertheless we use

this terminology for the simplicity. Because hospital choice is likely to be correlated with

patients’ unobserved severity of illness, estimating equation (1.2) using OLS will lead to

biased estimates. For instance, if sicker patients are more likely to choose a certain hospital

j, sit and cijt will be positively correlated, and hence ψ̂j will be overestimated.

To address the endogeneity of hospital choice, we use two sets of instrumental variables for

hospital choice dummy variables (ci) : (i) the travel time to each hospital, and (ii) a set

of dummy variables indicating whether a hospital is the closest one to a patient’s location.

As mentioned before, this is to account for the changes in travel time for patients living

sufficiently close to the HST station in the post-HST era, and is based on the assumption

that where a patient chooses to live relative to all hospitals is uncorrelated to her severity of

illness. We define travel time for patient i to hospital j in period t as

traveltimeijt =


min(cartimeij, traintimeij) if t = post-HST

cartimeij if t = pre-HST
(1.3)

where cartimeij denotes the drive time from patient i’s location to hospital j by car, and

traintimeij is the travel time from patient i’s location to hospital j by HST.18 Tests of validity
18Note that traintimeij is obtained by summing the following three components: (i) drive time from i’s

location to i’s nearest HST station h, (ii) travel time from station h to station k, which is the closest HST
station to hospital j and (iii) drive time from station k to hospital j. We obtain driving time by car by using
georoute routine developed by Weber and Peclat (2017) which calculates the driving time between two points
under normal traffic conditions.
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of our IV strategy and further details on estimating adjusted mortality rates are provided in

Appendix B.

Having obtained the adjusted mortality rates using the instrumental variable approach outlined

above, we use this measure of clinical quality to look the impact of hospital competition on

the quality of clinical care using a difference-in-differences estimator.

1.4.3 Estimation Results

As a starting point to this analysis, we first estimate equation (1.1) using hospital-level raw

mortality rates as a dependent variable. Table 1.4 Panel A reports the results, defining

hospitals located within 15 miles of HST as treated. We implement a simple difference

regression (pre vs post) in Column 1 to analyze the changes in hospital quality after the entry

of the HST. The coefficient on Post dummy variable is negative (β1 = −0.00078, interpreted

as decrease in mortality rates by 0.078 percentage points) but not significant. Column 2

reports the difference-in-differences estimates. Since hospitals located near the HST station

are the ones that are most affected by the entry of the HST and hence are exposed to

increased competition, the estimated diff-in-diff coefficient captures the impact of increased

hospital competition. We can see that the diff-in-diff coefficient is negative (β2 = −0.0042,

interpreted as decrease in mortality rates by 0.42 percentage points) but not significant.19

Hospital-level raw mortality rates, however, do not correctly reflect the true quality of clinical

care due to differences in patients’ health status across hospitals (referred to as hospital’s

“case-mix”) i.e., hospitals with a larger number of sicker patients are more likely to have

higher mortality rates. It is therefore essential to take into account differences in patient
19In Appendix A, we estimate equation (1.1) using hospital-level raw mortality rates as a dependent variable

while controlling for “hospital-level case-mix”. There we show that the diff-in-diff coefficient is negative and
significant.
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case-mix across hospitals, especially since we are using patients undergoing various types

of different surgeries. In order to control for the case-mix at the patient-level, we estimate

equation (1.2) using OLS, and use estimated ψ̂ as a measure of clinical quality to estimate

equation (1.1). Note that although this measure of quality controls for observed health status

at the individual patient-level, it does not control for unobserved (to the researcher) severity

of illness which may be correlated with patients’ hospital choice, and hence may be biased.

The results are reported Table 1.4, Panel A Column 3. The diff-in-diff coefficient is negative

and significant (β2 = −0.014), i.e. increased competition due to the entry of HST decreased

adjusted mortality rates by 1.4 percentage points.

As already mentioned, however, simply controlling for observed patient case-mix is not

sufficient to correctly measure the quality of clinical care. Patients’ unobserved (to the

researcher) severity of illness, which may be correlated with hospital choice, may contaminate

the quality of clinical care. We further control for patients’ unobserved severity of illness

by instrumenting hospital choice dummy variables for each period with travel time to each

hospital, and use thus (using IV) obtained adjusted mortality rates as the dependent variable

to estimate equation (1.1). The results are reported in Table 1.4, Panel A Column 4. After

controlling for unobserved severity of illness, we see that the (absolute) magnitude of diff-

in-diff coefficient has become larger. The diff-in-diff coefficient is −0.082 and significant,

suggesting that increased hospital competition leads to an improvement in the clinical quality

by approximately 8 percentage points. However, since our estimated ψ̂ does not necessarily lie

within [0,1] interval, it is difficult to directly translate ψ̂ to “mortality rates” (since mortality

rates should lie within [0,1]). Therefore, to facilitate interpretation, we rescale/normalize the

IV-estimated quality of clinical care so that estimates lie within the same bounds as our raw

hospital-level mortality rates. Table 1.4, Panel A Column 5 reports the diff-in-diff estimation
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results using these “rescaled” measures of hospital quality. After rescaling, the magnitude of

the diff-in-diff coefficient is similar to those in Columns 2 and 3.

As aforementioned, our final sample excludes patients who transferred from other hospital

and who arrived at a hospital via ambulance. Including these patients in our sample should

not change our results because the quality of clinical care should be independent from how

patiens arrived at a hospital. We include these patients in our sample and estimate equation

(1.1) and report the results in Table 1.4, Panel B. Our results hold consistently, and the DID

estimates are similar to those in Panel A.

1.4.4 Discussion of the Results

The results in the previous subsection suggest that increased competition leads to an im-

provement in hospital clinical quality. To evaluate the impact on patient welfare, we next

estimate a demand model of hospital choice and use the model estimates to perform welfare

analysis and counterfactuals.

1.5 The Model of Hospital Choice

To evaluate the impact of the HST on patient welfare we need to look at hospital choice

that patients would have made had the HST not been launched. To do this, we estimate

a hospital choice model, and conduct a reverse counterfactual analysis by switching off the

impact of the HST. The entry of the HST reduces travel time and thereby increases number

of hospitals in a choice set for patients living close to a HST station. To capture the changes

in patients’ choice set in our model, we extend the basic conditional logit model by imposing

travel time constraints on patients, following literature in geography and transportation. We

assume that travel time to each hospital determines whether that hospital is included in
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patients’ choice set or not. If a hospital is located too far away from a patients’ location, a

patient with travel-time constraints will exclude it from his choice set. This translates to a

decrease in the size of the choice set for patients living close to a HST station once the HST

is removed.

1.5.1 Utility and Demand

Each patient i chooses from Ji ⊆ J hospitals in his choice set, indexed j = 1, ...Ji where J

is the total number of hospitals in our data. The indirect utility of patient i from choosing

hospital j, j = 1, ..., J is defined as

uij =
L∑
l=1

Xj,kY
′

iβ
xy
.,l + ZjY

′

iα
z +Dij + X

′

jβ
x + αZj + εij (1.4)

where Xj is a L vector of hospital characteristics; Yi is a K vector of patient-specific

demographics; Dij is the travel time from patient i’s home to hospital j; Zj denotes the

quality of clinical care at hospital j; εij is an idiosyncratic taste shock that is distributed i.i.d.

type I extreme value. βxy, αz and βx are K × L, K × 1, and L× 1 matrices of coefficients,

respectively. Following previous literature on hospital choice, we assume that all patients are

admitted to some hospital, and hence there is no outside option in our model.

We estimate equation (4) using logit maximum likelihood approach. One might be concerned

about the endogeneity of quality of clinical care in the utility function. Previous literature

has found that treating a larger number of cases is associated with better outcomes. Hospitals

with higher unobserved quality will attract larger volume of patients, and this will in turn

lead to higher quality of clinical care.20 However, since our measure of quality is controlled

for patient case-mix, this issue does not arise (Gaynor et al. (2013b)).
20For more literature on volume-quality relationship, see Birkmeyer et al. (2002); Silber et al. (2010); and

Halm et al. (2002).
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1.5.2 Choice Set Formation

The entry of the HST has enlarged patients’ consideration sets by reducing the travel

cost. Hospitals that would not previously have been considered by the patient may now be

considered. We model this change consideration sets by imposing a travel-time constraint

on patients. We assume that time is a limited resource that constrains the choice options

from being evaluated. This assumption is consistent with theoretical and empirical literature

in geography and regional science where a relationship between the available time budget

and individuals’ destination choice has been established. Our modeling approach follows the

Approximate Nested Choice-Set Destination Choice (ANCS-DC) model developed by Thill

and Horowitz (1997) which explicitly models the formation of choice sets when individuals

have limited time resources.

Each patient has a travel-time threshold Ti which confines his choice set. We let Ti to be a

random variable with cumulative distribution PT (t; θ), where parameterization by θ allows

PT (t; θ) to depend on observable patient characteristics. Then, the unconditional probability

of patient i choosing hospital j is given as

Pr(yij = 1) =

∫ ∞
t=0

Pr(yij = 1|Ji)dPT (t; θ) (1.5)

where Jit is a choice set of individual i who has a travel-time threshold t. Hospitals are

discrete and mutually exclusive alternatives. Hence, if the hospitals are sorted according to

their travel time from patient’s location in ascending order, equation (13) can be simplified to

a summation over all the nested sets of hospitals defined by incremental travel-time thresholds,

given as

Pr(yij = 1) =
J∑
r=1

Pr(yij = 1|Jir)pT (r; θ) (1.6)
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where pT (r; θ) is the probability that travel time threshold is between travel times to destina-

tions r and r + 1, i.e.,

pT (r; θ) = PT (tr+1; θ)− PT (tr; θ). (1.7)

The attractive feature of this modeling approach is that it enables us to avoid considering all

subset combinations of hospitals which would result in 2J−1 choice sets for each patient. The

number of possible choice sets is substantially reduced by exploiting the non-random ordering

of hospitals based on their travel time from patients’ location and travel-time constraints.

Therefore, all hospitals that are located closer than any hospital that satisfies the inclusion

criterion set by the travel-time threshold are also included in the choice set, and all hospitals

that are located further than any hospital that does not satisfy the inclusion criterion are

excluded.

Nevertheless, the computational complexity still remains due to large number of hospitals

in our data. To further reduce the computational burden, we reduce the support of pT by

restricting the entire series of travel-time thresholds to take only a few discrete values.

Specifically, let Tr′ denote the travel-time threshold with r
′

= 1, ..., RT , where RT is the

number of possible travel-time thresholds after the number of discrete thresholds has been

approximated to a few manageable points. We denote the probability that patient i’s threshold

is Tr′ as πi,r′ . Let πi,r′ be a function of concomitant (demographic) variables, defined as

πi,r′ =
exp(γr + Y

′

iφr′ )∑RT
l exp(γl + Y′iφr′ )

(1.8)
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where Yi is a K × 1 vector of patient demographics (Gupta and Chintagunta (1994)). Then

the probability that hospital j is chosen is

Pr(yij = 1) =

RT∑
r′=1

Pr(yij = 1|Jir′ )πi,r′ (1.9)

where Jir′ is the set of all hospitals h such that Dih ≤ Tr′ . The model is estimated by

maximizing the following log likelihood function:

LL =
N∑
i=1

J∑
j=1

yij log

 RT∑
r′=1

Pr(yij = 1|Jir′ )πi,r′

 . (1.10)

1.6 Demand Estimation Results

We estimate the conditional logit model of hospital choice under travel-time constraint

(ANCS-DC). The covariates that enter the utility function are as follows: “TravelTime” refers

to travel time (in minutes) between the patient and a hospital in the choice set, and is defined

in units of 100 minutes. Age1 is a dummy variable that equals 1 if a patient is between 25

and 50 years of age and 0 otherwise; Age2 is a dummy variable that equals 1 if a patient is

between 50 and 75 years of age and 0 otherwise; Age3 is a dummy variable that equals 1 if a

patient is above 75 years of age and 0 otherwise; LowIncome is a dummy variable that equals

1 if a patient falls into the lowest income group (total 10 groups); HighSeverityMainSick is

a dummy variable that equals 1 if a patient is diagnosed with a disease of mortality rate

greater than 0.2 and 0 otherwise; SeverityMainSick is a dummy variable that equals 1 if

a patient is diagnosed with a disease of mortality rate within the range [0.1, 0.2) and 0

otherwise; HighSeveritySubSick is a dummy variable that equals 1 if a patient is diagnosed

with a comorbidity of mortality rate greater than 0.2 and 0 otherwise; SeveritySubSick is
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Table 1.5: Demand Model Estimates

(1) Multinomial Logit (2) ANCS-DC
Coefficient Standard error Coefficient Standard error

TravelTime -4.9798*** 0.0242 -3.6825*** 0.0312
Mortality -0.6850*** 0.1258 -0.6643*** 0.0601
Mortality2 -5.7107*** 0.1878 -5.5142*** 0.1707
Mortality×Female 0.1241 0.0939 0.1258** 0.0633
Mortality×Age[25-50) 0.0393 0.1520 0.0856 0.0762
Mortality×Age[50-75) -0.0087 0.1406 0.0858 0.0704
Mortality×Age[75+) 0.3312** 0.1626 0.3264*** 0.1023
Mortality×LowIncome 0.6514*** 0.1752 0.6565*** 0.1084
Mortality×HighSeverityMainSick 0.6026* 0.3108 0.6262*** 0.2045
Mortality×SeverityMainSick -0.3047* 0.1660 -0.3007*** 0.0838
Mortality×HighSeveritySubSick -0.3024 0.2866 -0.3103 0.1944
Mortality×SeveritySubSick -0.7323*** 0.1731 -0.7429*** 0.1232
Mortality×HighSeveritySurgery -0.3195** 0.1345 -0.2745*** 0.0898
Mortality×SeveritySurgery -0.6331*** 0.1411 -0.6161*** 0.1122
Mortality×Disabled 0.6148* 0.3573 0.6091*** 0.2288
HospitalBed 0.0995*** 0.0019 0.1014*** 0.0019
HospitalBed×Female 0.0006 0.0014 0.0008 0.0014
HospitalBed×Age[25-50) -0.0015 0.0023 0.0004 0.0023
HospitalBed×Age[50-75) 0.0145*** 0.0021 0.0121*** 0.0021
HospitalBed×Age[75+) -0.0066*** 0.0025 -0.0185*** 0.0030
HospitalBed×LowIncome -0.0195*** 0.0029 -0.0180*** 0.0029
HospitalBed×HighSeverityMainSick -0.0204*** 0.0051 -0.0216*** 0.0051
HospitalBed×SeverityMainSick 0.0266*** 0.0022 0.0258*** 0.0022
HospitalBed×HighSeveritySubSick -0.0204*** 0.0046 -0.0190*** 0.0050
HospitalBed×SeveritySubSick 0.0250*** 0.0023 0.0250*** 0.0023
HospitalBed×HighSeveritySurgery 0.0125*** 0.0019 0.0136*** 0.0021
HospitalBed×SeveritySurgery 0.0148*** 0.0021 0.0162*** 0.0021
HospitalBed×Disabled 0.0044 0.0051 0.0021 0.0053
Log-Likelihood -162,533.49 -1.60,575.7

Notes: *** Significant at the 1 percent level; ** Significant at the 5 percent level;* Significant at the 10
percent level.
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a dummy variable that equals 1 if a patient is diagnosed with a comorbidity of mortality

rate within the range [0.1, 0.2) and 0 otherwise; HighSeveritySurgery is a dummy variable

that equals 1 if a patient is undergoing a surgery of mortality rate greater than 0.2 and 0

otherwise; SeveritySubSurgery is a dummy variable that equals 1 if a patient is undergoing

a surgery with a mortality rate within the range [0.1, 0.2) and 0 otherwise; Disabled is a

dummy variable that equals 1 if disabled with kidney and other dysfunction and 0 otherwise;

HospitalBed is number of beds in a hospital, and is defined in units of 100 beds.

The estimation results are reported in Column 2 of Table 1.5. The results are, for the most

part, intuitive. Travel time to the hospital plays an important role in patients’ decisions when

choosing a hospital. The coefficients suggest that patients are less likely to go to hospitals

that are located further away from their home.

Our estimates suggest that patients dislike hospitals with poor clinical quality (as measured

by adjusted mortality rates) and hospital quality enters patients’ utility nonlinearly. We

find that patients with more severe comorbidities and patients who are undergoing a more

risky surgery are more sensitive to the quality of clinical care. We do not find differences in

sensitivity to mortality rates between patients of different genders, ages.

Patients generally prefer larger hospitals (as measured by the number of hospital beds). Lower

income patients are less likely to choose larger hospitals. Sicker patients are generally also

likely to choose larger hospitals.

Table 1.7presents the estimates of the parameters of travel-time threshold probabilities. We

discretize travel-time threshold into 9 points: 30, 60, 90, 120, 180, 240, 300, 360, and 420

minutes.21 To reflect decreasing marginal disutility of time spent traveling, threshold points

are 30 minutes apart (instead of 60) below 120 minutes of travel time. Several of our estimates
21Travel time threshold of 420 minutes includes all the hospitals in our data.
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show bimodality over time constraints which makes the interpretation complicated. Patients

living in metro areas are likely to have choice set to be within 30 minutes or 360 minutes. Our

estimates suggest that low income patients are more likely to be time constrained in their

choice. This may be due to the monetary cost of traveling long distances. For example, low

income patients may not have a car, which is not uncommon given the public transportation

infrastructure in South Korea. Older patients are less likely to be time constrained within 30

minutes, but are also less likely to be constrained within 360 minutes. Since older patients

are more likely to be sicker (and have more time if they have retired) they may be less time

constrained than younger people, and are willing to travel longer distances. At the same

time, since they are older, they may experience difficulty traveling too much, resulting in a

bimodal distribution. Coefficients on disease, comorbidity are ambiguous.

We also estimate the hospital choice model using conventional multinomial logit model

(without travel-time constraints). The estimates of the parameters are reported in Column

1 of Table 1.5. In most respects, the signs and magnitude of the estimates are very similar

to those obtained using the ANCS-DC model. We prefer to use the ANCS-DC model

because the general theory of choice behavior postulates that individuals follow a two-stage

decision process in which the alternatives are reduced to a smaller set (consideration set).

The construction of these choice sets depend on factors such as the individual’s awareness,

feasibility, saliency or accessibility of the alternatives, and mis-specifying the considerations

sets may lead to inconsistent parameter estimates. In our setting, we are not able to use

an ad-hoc rule such as “15 miles within a patients’ home” to define a choice set because a

substantial number of patients travel very long distances (even prior to the entry of the HST)

to seek better health care services. The ANCS-DC model that we employ is flexible in this

manner because it allows the travel time thresholds to be probabilistic, and also to depend

on patients’ demographic characteristics. We also use the likelihood ratio test to test whether

modeling of the choice set incorporated in the formulation of the ANCS-DC model enhances

the representation of the observed hospital choice over the conventional multinomial logit

model. The χ2 statistic for this test is −2× (−162, 533 + 160, 575) = 3, 916 with 89 degrees of
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freedom, leading to significance at the 0.01 level. This establishes the relevance of travel-time

constraints in modeling the hospital choice problem.
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1.7 Counterfactual Analysis

Using the estimates from the demand model we evaluate the impact of the entry of the HST

on patient welfare. We decompose changes in patient welfare arising from (i) the reduced

travel time and (ii) changes in hospital quality. We implement this using the following steps:

Using pre-HST travel times and pre-HST clinical quality as a baseline, we first calculate

changes in patient welfare arising from reduced travel time, assuming hospital quality did not

change. Next, using the same baseline, we calculate changes in welfare arising from improved

hospital quality, assuming that travel time did not change. Finally, we calculate changes in

welfare arising from both, reduced travel time and changes in clinical quality.

We then evaluate the impact of the entry of the HST on patients’ health outcomes through

its effect on patients’ sorting to better hospitals. In other words, we are only interested

in quantifying the impact of patients’ sorting to better hospitals on their health outcomes

(ignoring hospitals’ response to greater competition). We compare the number of deaths

in post-HST period to a counterfactual scenario where the train is removed while keeping

hospital quality constant.

1.7.1 Changes in Patient Welfare

We compute the changes in patient welfare from the advent of the HST: changes in travel

time and changes in hospital quality. Using the parameter estimates from the demand model,

we simulate a post-HST scenario where the HST is removed and travel time remains the

same as that of the pre-HST level. Recall from our demand model that when travel-time

becomes longer (i.e. if the travel time is that of the pre-HST level), constraints imposed on
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patients’ travel-time will force them to remove further-located hospitals (which are included

in the choice set if the travel time is that of the post-HST level) from the consideration set.

The expected patient surplus (in utils) for patient i with post-HST travel time can be

expressed as

E(Surplustraini ) =

RT∑
r=1

E(Surplustraini|r ) · πir =

RT∑
r=1

E

(
max

j∈Jtrain
i|r

(Ūij + εij)

)
· πir (1.11)

while in with pre-HST travel time, it is expressed as

E(Surplusno traini ) =

RT∑
r=1

E(Surplusno traini|r )·πir =

RT∑
r=1

E

(
max

j∈Jno train
i|r

(Ūij + εij)

)
·πir. (1.12)

For patients living in treated regions, the choice set J traini|r can differs from Jno traini|r because

changes in travel time changes the composition of hospitals in a choice set. Assuming that εij

is distributed i.i.d extreme value, the above expression can be rewritten as a logit-inclusive

value

E(Surplustraini ) =

RT∑
r=1

ln

 ∑
j∈Jtrain

i|r

exp(Ūij)

 πir (1.13)

and

E(Surplusno traini ) =

RT∑
r=1

ln

 ∑
j∈Jno train

i|r

exp(Ūij)

 πir (1.14)

The average change in surplus per patient is given as

E(∆Surplusi) =
1

N

N∑
i=1

E(Surplustraini )− E(Surplusno traini ) (1.15)
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Table 1.9: Counterfactual Analysis

Panel A. Changes in Patient Welfare
Change in travel time

No change in quality

No change in travel
time

Chage in quality

Change in travel time

Chage in quality

Treated Patients ∆Utility 0.2815 0.0170 0.2973

Dollar Value $1,269 $76.82 $1,336

Control Patients ∆Utility 0 0.0197 0.0197

Dollar Value 0 $88.51 $88.51

Panel B. Impact of Sorting on Patient Survival (number of lives saved)

No change in quality Chage in quality

Treated Patients 0.2510 12

Control Patients 0 4

Total 0.2510 16

Notes: Panel A reports the changes in patient welfare in terms of expected utility (unit in expected
utility) and dollar value under various counterfactual scenarios. Panel B reports the number of patients
that would survive as a result of sorting to better hospitals.

where N is the number of patients in post-HST period.

We first calculate the quantity in equation (1.15) assuming the quality of clinical care did not

change. This allow us to evaluate the changes in welfare from the reduction in travel time

only. To obtain these quantities, we used pre-HST travel time as well as pre-HST quality of

clinical care as our baseline. The results are reported in Table 1.9, panel A. Assuming the

quality of clinical care did not change, patients living in treated regions experience an average

increase of 0.2815 units in expected utility. This increase in welfare arises from reduction

in travel time, and the resulting ability of patients to sort to better hospitals. There is no

change in welfare for patients living in control regions as they do not benefit from the entry

of HST. Since there is no price coefficient in the demand model due to the absence of price

mechanism in this market, we cannot directly convert the welfare change from utils into a

dollar value. Therefore, following Gaynor et al. (2016), we first translate the gains in terms

of the preference over distance, and then convert the welfare estimates into a dollar value
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using additional data from other sources.22 Comparing the gains in utils to the preference

over distance, we find that the welfare effect of the reduction in travel distance for the treated

patients corresponds to 7.6 minutes reduction in travel time.23 Applying a $167 value per

minute reduction in travel time (Gaynor et al. (2016); Gowrisankaran et al. (2015)), the

reduction in travel time yields a welfare effect of approximately $2,071 (167× 7.6 = 1, 269 )

per patient.24

Next, we calculate the changes the welfare arising from changes in quality of clinical care,

holding the changes in travel time constant. Patients living in treated regions experience

an average increase of 0.0170 units in expected utility. Patients living in control regions

experience an average increase of 0.0197 units in expected utility. The increase in expected

utility for patients living in control regions arises from the fact that they face higher clinical

quality although they do not benefit from the new transportation system. Applying the same

back of the envelope calculation as before to monetize the gains in utils, the improvement in

clinical quality yields a welfare effect of approximately $76.82 per patient for patients living

in treated regions, and $88.51 per patient for patients living in control regions.25

22Gowrisankaran et al. (2015) estimate that a one minute reduction in travel time to hospitals increases
patient surplus by $167.

230.2815/(−3.6825) = −0.0764, where −3.6825 is the coefficient on travel time. Travel time in the regression
is defined in units of 100 minutes.

24Due to the travel time constraint in our model, the number of hospitals that a patient considers changes
when travel time to each hospital changes. Increased number of hospitals will affect the welfare gains because
the term in parentheses in equations 1.13 and 1.14 is simply the denominator of the logit choice probability
(which is simply the outcomes of the mathematical form of the extreme value distribution, and has no
economic meaning (Train (2009)). Therefore, we also calculate changes in welfare arising from reduced
travel time (holding hospital quality constant) while holding the number of hospitals in the consideration set
constant.

25The welfare effect of the improvement in clinical care for the treated patients corresponds to approximately
0.46 minutes reduction in travel time, 0.0170/(−3.6825) = −0.0046. Multiplying this by the value per minute
reduction in time, we get 0.46× 167 = 76.82. Similarly, the welfare effect of the improvement in clinical care
for the control patients corresponds to approximately 0.53 minutes reduction in travel time. Multiplying this
by the value per minute reduction in time, we get 0.53× 167 = 88.51.
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Finally, we calculate the changes the welfare arising from both, changes in travel time and

changes in quality of clinical care. Patients living in treated regions experience an average

increase of 0.2973 units in expected utility. Patients living in control regions experience an

average increase of 0.0197 units in expected utility (identical to the case when quality of

clinical care changes, holding the changes in travel time constant). This yields a welfare effect

of approximately $1,336 per patient for patients living in treated regions, and $88.51 per

patient for patients living in control regions.26

1.7.2 The Impact of Patients’ Sorting on Survival

The HST has enabled patients to choose hospitals that were previously difficult to consider

due to long travel distances. Therefore the HST has not only improved the quality of clinical

care through increased competition among hospitals, but has also increased the size of the

choice set for the patients which in turn has resulted in patients’ sorting to better hospitals.

One way to directly measure the benefits generated by the HST through its impact on patient

sorting is to calculate how many patients would have died in the post-HST period if the HST

were to be removed, i.e. post-HST period patients are faced with the pre-HST level travel

time to the hospitals.

To implement this, we closely follow Gaynor et al. (2016) and calculate the expected

differences in mortality across all patients:

E(∆Mortality) =
∑
i

[
E(Mortalityi)

train − E(Mortalityi)
no train] (1.16)

26The welfare effect of the improvement in clinical care for the treated patients corresponds to approximately
8 minutes reduction in travel time, 0.2973/(−3.6825) = −0.0807. Multiplying this by the value per minute
reduction in time, we get 8× 167 = 1, 336.
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where

E(Mortalityi)
train =

∑
j

Prtrain
ij · Prob(Mortalityi|choice = j,Healthi) (1.17)

and

E(Mortalityi)
no train =

∑
j

Prno train
ij · Prob(Mortalityi|choice = j,Healthi). (1.18)

Equations (1.17) and (1.18) denote the mortality probability with post-HST travel time and

pre-HST travel time, respectively. Mortalityi is an indicator variable which takes value 1 if

the patient dies and 0 otherwise. Term Prob(Mortalityi|choice = j,Healthi) that appears

in both equations is the predicted probability of death conditional on choice of hospital and

patient’s health status. Since we estimated adjusted mortality rates and the coefficients on

patient case-mix using linear probability model, the predicted mortality probability may not

necessarily lie within the (0,1) interval. Therefore, we obtain the predicted probability of

death using the Linear Discriminant Model (LDM) method which transforms the coefficients

from the linear probability model into maximum likelihood estimates of the parameters of a

linear discriminant model. 27 The LDM implies a logistic regression model for the dependence

of the outcome on the predictors. This method ensures that the predicted probabilities lie

within the (0,1) interval.

The results are reported in Table 1.9, panel B. Our estimates from this counterfactual analysis

suggest that 0.25 more lives can be saved from patients’ sorting. Since our data is a 2 percent

random sample of the entire population, this translates to approximately 12 lives over the

five quarters, which is equivalent to 10 lives on an annual basis.28

27https://statisticalhorizons.com/better-predicted-probabilities
280.25× 50× (4/5) = 10
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Next, we calculate how many more lives are saved due to patient sorting when the quality of

clinical care also responds to the entry of HST. Our estimates suggest that 12 lives (480 lives

on an annual basis) of patients living in treated regions and 4 lives (160 lives) of patients

living in control regions can be saved.29

1.8 Conclusion

This paper exploits the entry of HST in South Korea, which reduced patients’ travel costs,

increasing substitutability among hospitals and thereby increasing hospital competition. This

exogenous shock allows us to look at the impact of reduced travel time on patient behavior

as well as to study the causal impact of competition on hospital quality. Taking advantage of

the differential effects of the entry of the HST on hospitals located in different regions of the

country, we use a difference-in-differences estimator to examine the impact of competition on

health outcomes measured by 30-day mortality rates following admissions for cardiovascular

or neurological surgeries. On the methodological side, we utilize the heterogeneous effects of

the entry of the HST on patients living in different areas of the country to obtain a reliable

measure of hospital-level quality of clinical care.

We find that the entry of the HST improves patient mobility, and that intensified hospital

competition leads to an improvement in clinical quality. To evaluate the overall impact of

HST on patient welfare, we estimate a structural model of hospital choice, allowing for a

flexible formation of patients’ consideration set. We find that patients living near a HST

station experience an improvement in welfare arising from reduction in travel time as well

as improvement in hospital quality. Patients living further away from HST stations also

experience an improvement in welfare because while they do not benefit from the reduced

travel time, they benefit from the improvement in the quality of treated hospitals. We also
2912× 50× (4/5) = 480 and 4× 50× (4/5) = 160
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find that HST has led to a substantial improvement on the probability of patient survival

through its effect on patient sorting, even while holding hospital quality constant.

Overall, our paper suggests that increased hospital competition can lead to beneficial health

outcomes and that an improvement in transportation infrastructure can have a beneficial

impact on patient health by facilitating patients’ sorting to better hospitals through lower

travel costs.
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Chapter 2

Search Frictions, Sorting and Matching

in Two-Sided Markets

2.1 Introduction

In many two-sided marketplaces agents search for potential partners to form a match based

on a mutual agreement.30 Since agents on both sides of the market have preferences regarding

each others’ characteristics, and because these preferences are often private, agents on each

side do not know which counterparts are willing to match. Forming a match based on mutual

compatibility in the presence of private preferences, therefore, generally requires extensive

costly search.
30Examples can be found across a wide range of industries, such as a marriage and dating market, college

admission, online labor service (Taskrabbit and Upwork) and hospitality (Airbnb). Fradkin (2015) shows that
more than 40 percent of booking inquiries on AirBnB platform are rejected. Among those, approximately 14
percent of rejections are driven by hosts’ preferences concerning the characteristics of the searcher or the trip.
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The question of who matches with whom had been a central question in the matching

literature. In the presence of costly search, both preferences and search frictions shape the

formation of a match. Understanding the relative impacts of these two forces on match

outcomes is not only theoretically important but also managerially relevant because the

design of online two-sided platforms should vary depending on whether match outcomes are

primarily a result of preferences or search frictions.

In this paper, we try to obtain a better understanding of the relative impact of preferences

and search frictions on match outcomes using data from an online dating platform MonCherie

(name disguised per the request of the data provider).31 In particular, the goal of this paper

is twofold: First, we disentangle the relative impact of preference and frictions on assortative

matching (i.e., sorting), a widely observed phenomenon where couples display resemblance

across various characteristics such as age, education level, ethnicity, and income, etc. Sorting

in married couples has been an important topic of study as it may have long-term impact on

economic development and inequality through its impact on the outcomes of children and

accumulation of human capital (Raquel (2003); Raquel and Rogerson (2001)).32 Second, we

quantify the departure from efficiency caused by frictions in the platform. This will offer

insights on the gains that users can achieve when search frictions are reduced through a

better design of the platform.

More specifically to assortative matching, there are two distinct explanations for assortative

matching (Hitsch et al. (2010a)). One explanation is that sorting is an equilibrium outcome
31Although the primary reason for the existence of online dating platforms is to make the search for a

partner as easy as possible, search frictions nevertheless still exist in these platforms: First, due to a large
number of participants on the platform, users cannot consider all available profiles. Second, private preferences
of agents on the other side of the market create uncertainty about whether a match will be achieved which
may lead to misdirected efforts and sub-optimal matches. Therefore, an online dating platform provides an
ideal environment for us to study the relative contribution of search frictions and preferenes on matching
outcomes.

32With one-third of marriages in the United States beginning online (Cacioppo et al. (2013)), online dating
has become the most popular way for couples in U.S. to meet.
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driven by agents’ preferences. For example, if mate preferences are “horizontal”, people may

prefer to match with a similar partner, which in turn results in sorting. Alternatively, if

mate preferences are “vertical” in the sense that everyone ranks potential partners using the

same criterion, then the ranks of matched partners will be positively correlated. In this case,

couples will display sorting along attributes that are monotonically related with these ranks.

Alternative explanation is that search frictions influence how couples meet, irrespective of

preferences. For example, in offline dating markets, same ethnicity in couples might not

necessarily be due to the preference regarding ethnicity, but instead might reflect the fact that

people are constrained in their choices due to where they live. In reality, both preferences

and search frictions affect how couples meet.

In an online dating context, the type of search cost can vary depending on how the platform

is designed or how users conduct search. Typically, users on online dating platforms decide

to make offers (e.g. send a message) based on the expected utility of a match given the

probability that the offer will be accepted. Therefore, if two potential partners who differ

in their characteristics yield identical utility, offer is more likely to be made to the one who

is ex-ante more likely to accept it. As discussed earlier, since preferences do affect partner

choice to a certain degree, partners who are similar to the focal user are ex-ante more likely

to accept the offer than those who are very dissimilar. Therefore, unless a user searches

for additional information that helps to make a more accurate prediction about the match

probability, the offer is more likely to be sent to the one who is more similar, which in turn

will result in sorting. Therefore, while sorting on online platforms may partly be due to users’

preference for similar others, it is also influenced by search frictions because users with high

search costs will not search for additional information, making decisions only based on the

limited information that is provided in the default setting.
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The unique feature of our data that helps us to answer our research questions is that they

were generated from a field experiment conducted by MonCherie. The treatment of the field

experiment is to provide a piece of information about the preference of the opposite side to

randomly selected users, thereby reducing search friction for these users. Many online dating

platforms typically give users the option to `ike or not `ike a profile.33 In a default setting

(control group), users do not know whether or not the person in the profile had `iked them.

The only way for the user to find out is by `iking the profile: If the focal user `ikes a profile,

and if the person in the profile had also already `iked him, both users get a notification about

the mutual `iking. If no notification appears upon `iking a profile, it implies that the person

in the profile “did not `ike” the focal user.34

`iking a profile is costly. While the simple act of clicking a button or swiping the screen may

be costless, a user faces the risk of having one’s offer of affection rejected if the other doesn’t

`ike back, which can hurt one’s ego (for a comprehensive review on rejection, see Baumesiter

and Dhave (2001) and Baumeister et al. (1993)). Since users in the control group have to

click the `ike button to find out if they were `iked by the person in the profile, they have to

engage in costly search to find out this information.

The experiment allowed randomly selected users (treatment group) to know upfront whether

the person in the profile had `iked them, without the need to `ike a profile in order to

find out this information. With the majority of initiated messages not receiving a response,

knowing whether someone had `iked them allows users to gauge the likelihood of getting a

match more precisely. Since users in the treatment group know this piece of information
33Or swipe right (like) or left (not like) on a mobile device
34“did not `ike” can happen if (i) the person in the profile had browsed the focal user’s profile, but decided

not to `ike, or (ii) the person in the profile has not browsed the focal user’s profile yet (i.e. the algorithm of
MonCherie has not yet displayed the focal user’s profile) and therefore had not had an oportunity to decide
whether or not to `ike the focal user. The focal user is not able to distinguish between these two causes.
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upfront without having to take any further action (unlike users in the control group who have

to engage in costly search to find out this information, the treatment reduces search frictions.

In the data, we find descriptive evidence suggesting that the treatment leads to less sorting

between matched couples across various dimensions, i.e. treatment makes users to match

with partners who are more dissimilar from themselves. Specifically, we find that users

in the treatment group who matched with those who had `iked them display significantly

lower correlation in attributes (age, education level, Body-Mass-Index (BMI), ethnicity and

attractiveness) with their matched partners compared to their control counterparts.35 Since

the treatment reduces search frictions by letting users know the information about who `iked

them without having to search for it, the descriptive patterns we see in the data suggest

that reducing search frictions may lead to lower sorting between couples. The mechanism

behind this pattern, according to our data, is that the treatment encourages users to initiate

a conversation with potential partners who had `iked them and who are dissimilar from

themselves. That is, when `iked by a dissimilar partner, users in the control group know this

and hence initiate a conversation with them. Users in the control group, on the other hand,

do now know this information (unless they engage in costly search), and therefore do not

initiate a conversation with them due to the ex-ante low probability of receiving a reply.

Despite the reduction in uncertainty about the preferences of the other side, users still face

uncertainty about whether a match will be formed because the `ike from a potential partner

does not guarantee a match.36 If the cost of initiating a contact is non-negligible, the decision

to initiate a contact depends on the probability of a match. A user may decide to forgo

contacting a desirable partner and save on the costs if the expected probability of a match is

sufficiently low. However, if the cost of initiating a contact were non-existent, the decision to
35We only consider matches that were initiated by the focal user.
36i may have `iked j because the utility from matching with j is higher than the utility of staying single.

Nevertheless, i may reject j’s offer if someone more preferable than j makes him an offer.
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contact a potential partner would only depend on the utility of a match. Hence, in the latter

case, only preferences shape the formation of a match.

To achieve our research objective, we model the decision process of a user who is considering

whether to search for and to contact a potential partner of the opposite gender. The model

incorporates preference heterogeneity across users and also allows for costly search as well

as costly initial contacting. Browsing through each profile to obtain detailed information

about a potential partner is costly because it takes time and cognitive effort to process the

information. Thus, the user browses only a fixed number of profiles that maximizes the sum

of the expected utility net of browsing costs, which represents his consideration set. For each

profile in his consideration set, the user first has to decide whether to take a costly action

of `iking a profile. In our model, some users know upfront whether the potential partner

had `iked them (treatment group). The rest of the users do not know whether the potential

partner had `iked them (control group) and therefore have to search for this information

through `iking a profile. In addition to revealing the information about the `ikes for the

control group, `iking a profile serves an additional purpose for users in both groups, namely

signaling interest to the potential partner.37 Upon his decision to `ike (or not `ike), the

user then has to decide whether to initiate a conversation by sending a costly message. The

resulting framework allows us to model users’ decision to search for- and to contact potential

partners and how these decisions are related to their preferences and costs.

Identification of search models is difficult due to the interdependence between search costs

and preferences. Correspondingly, we rely on variation in information sets caused by the

experiment as well as the exclusion restriction to separately identify preference from costs.
37The potential partner j may find out whether the focal user i had `iked him by `iking i’s profile. Upon

finding out that i had `iked him, j may choose to message i.
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Our estimation results reveal that search costs play a significant role in shaping the outcomes

on the platform.

Based on the preference and cost estimates, we predict who matches with whom in a frictionless

environment where only preferences shape the matching outcomes. Predicted matches in

a frictionless environment are simulated using the deferred-acceptance algorithm of Gale

and Shapley (1962). Note that Gale-Shapley mechanism assumes the presence of a central

matchmaker who matches the agents given individual preferences over potential partners,

and hence does not describe the decentralized search process of the online dating platform.

Adachi (2003) shows, however, that as frictions disappear, the set of equilibrium outcomes in

a decentralized search model reduces to the set of stable matchings in a corresponding Gale-

Shapley problem. Moreover, repeated rounds of offer-making and corresponding rejections of

the deferred-acceptance algorithm resemble the behavior of the users on the dating platform.

Our results reveal that frictions play a significant role in shaping assortative matching patterns:

complete removal of frictions leads to a significantly lower level of sorting (lower attribute

correlations between matched couples). Specifically, we find that removing frictions reduce

age correlation by approximately 14 percent, education correlation level by 42 percent, and

attractiveness correlation by 30 percent, and the proportion of users who match with partners

of other ethnicity increases by roughly 13 percent, compared to the outcomes achieved in the

default setting.

We then turn to the question of efficiency. Since the stable matching predicted by the

Gale-Shapley algorithm is also Pareto-optimal, it serves as an efficiency benchmark. Using

this benchmark, we quantify the departure from efficiency caused by frictions on the platform.

We assign ordinal rankings to each matched partner (for both men and women) based on

estimated preference parameters and compare the average rankings achieved across different
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protocols. We find that removing frictions improves the average ranking of the partner by

approximately 7 percent compared to the default (control) setting. These numbers suggest

that removing frictions significantly improves on the outcomes achieved in an environment

with frictions,.

The rest of this paper is structured as follows. In the following section we review the related

literature and its relevance to this paper. Section 2.3 describes the institutional details of

our online dating platform. Section 2.4 describes the details of the experimental design.

Section 2.6 summarizes the data and presents descriptive evidence suggesting that reducing

frictions may lead to less sorting. In Section 2.7 we propose a model of search and choice

for a partner. Estimation details and results are discussed in Section 2.8 and Section 2.9,

respectively. Sections 2.10 and 2.11 present counterfactual exercises. Finally, Section 2.12

concludes.

2.2 Related Literature

This paper is closely related to recent literature that have studied frictions in online markets.

Fradkin (2015) looks at search frictions in an online apartment rental market, Airbnb. He

shows that on Airbnb, even after a buyer identifies an apartment of interest, many of the

transactions can fail because the seller may reject the buyer, or because multiple buyers

may contact the seller at the same time.38 He studies how ranking algorithms can increase

the efficiency of the platform in terms of greater number of matches. Horton (2014) shows

that failed transactions due to information frictions is also common in online labor markets

wherein employers inefficiently pursue oversubscribed workers, and studies how the platform

can optimally allocate employers’ attention to workers. Dinerstein et al (2018) compare

shopping behavior and price competition on eBay under an alternative platform design, and
38This phenomenon is termed as “ congestion”.
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show that guiding consumers toward a price ranking can lead to a higher surplus. While

these papers are similar to ours in that they study frictions in two-sided online markets,

they do not study assortative matching which is the main focus of our paper.39. In many

markets such as a market for new physicians/law graduates, and college admissions, early

transactions (i.e. “unraveling”) can be problematic. Unraveling may, at least ex-post, be

inefficient if information that is important for determining match quality evolves over time.

In such markets, transactions arranged before critical information becomes available will

not be able to achieve matchings that are as efficient as those that could be achieved after

the information becomes available. Frechette et al. (2008) show that unraveling can create

inefficient matching outcomes in the market for post-season college football games.

Our paper is also related to empirical work that estimates mate preferences using data on

marriages or romantic relationships (Wong (2003); Choo and Siow (2006); Flinn and Del Boca

(2012); Chan et al. (2015); Richards Shubik (2015)). These papers fit a structural model

of equilibrium match formation in which preferences are parameterized to observed match

outcomes. Wong (2003) estimates an equilibrium two-sided search model to explain marriage

outcomes in the Panel Study of Income Dynamics (PSID). Choo and Siow (2006) estimate

a frictionless tranferrable utility matching model. Arcidiacono et al. (2016) estimate a

two-sided directed search model of romantic relationship formation and show that individuals

direct their search for a partner based on partners’ characteristics, endogenously determined

probability of matching, and the terms of a relationship (i.e. whether sex is included in a

relationship). While these paper use observed matches to estimate mate preferences, our data

allows us to observe each user’s entire search process. This enables us to estimate preferences

based on users’ decision to initiate a conversation, independent of whether an actual match

was formed or not.
39Related research on information frictions and market inefficiency is a paper by Frechette et al. (2008)
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More recently, there has been an increase in number of papers using data on speed-dating and

online dating. Kurzban and Weeden (2005), Fisman et al. (2006) and Fisman et al. (2008)

use data from “speed-dating” to study preferences for mates. Lee (2015) finds that online

dating promotes marriages that exhibit weaker sorting along occupation and geographic

proximity, but stronger sorting along education and other demographic traits. Lee and

Niederle (2015) study the effect of preference signaling by attaching one of a limited number

of virtual roses to a date request in a major Korean online dating website, and find that

users are more likely to accept a date request when a virtual rose is attached.40 Bapna et al.

(2016) study how anonymous browsing affects user behavior and Bapna et al. (2019) study

how the vote identity revelation affects user behavior in an online dating platform. More

recently, Fong (2018) studied search and matching behavior in an online dating application,

focusing on how users respond to market thickness. Bojd and Yoganarasimhan (2019) study

the causal effect of popularity information in online dating and find evidence of strategic

shading due to fear of rejection. Research in this area that is most close to ours is that by

Hitsch et al. (2010a) and Banerjee et al. (2013). Using data from an online dating website,

Hitsch et al. (2010b) study the efficiency of matches obtained in online dating markets and

find that the matches predicted by the economic model (Gale-Shapley deferred-acceptance

algorithm) are similar to the actual matches achieved in the dating website, suggesting that

the matches achieved in their dating website are approximately efficient. They are also able to

largely predict the assortative matching patterns observed in the matches, which suggests that

assortative matching can arise in the absence of search frictions, primarily due to preference

and market mechanism. Using similar approach, Banerjee et al., (2013) study how preferences

for caste can affect equilibrium patterns of matching. They find that there is a very strong
40In several online dating websites, participants are allowed to send signals to potential partners. For

example, in an online dating platform Tinder, users can send one “super like” each day to signal interest. In
a matchmaking engine of the rating website “Hot or Not”, participants can send each other costly virtual
flowers which, according to the website, increase the chances of receiving a positive response.
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preference for within-caste marriages, and also show that in equilibrium, ignoring caste-related

preferences does not alter the matching patterns on non-caste attributes. Compared to these

papers, our experiment enables us to detect a source of search friction which motivates us to

disentangle the contribution of friction and preferences on the equilibrium sorting.

2.3 Institutional Details

MonCherie is a typical freemium community where most of the users sign up for a free

account which allows them to use all the basic features to interact with other members of

the platform. These basic features include browsing, clicking the profile for more details

(henceforth click), `iking and messaging. By paying a monthly subscription fee, users can

also upgrade to a premium account which consists of a fixed bundle of premium features.

Among other incremental features, the premium bundle includes the ability to know whether

the person in the profile had `iked the focal user.41

MonCherie is operated on both a website and a mobile app. The design of the website

is somewhat different from the mobile app. Although the experiment was conducted on

randomly selected users who use either the website or the mobile app, in this paper we only

focus on the mobile app users because the design of the mobile app is much simpler, allowing

the analysis to be more tractable. We first describe how the mobile app works for a user

in a default setting (i.e. user in the control group with a non-premium account), and then

proceed to describe how the experiment changes the operation of the app for users in the

treatment group in the following section.

When a non-premium user in the control group opens the mobile app, a random profile is

displayed to him based on the internal algorithm of MonCherie. Figure 1 illustrates what is
41We only sample from the users with a non-premium account to avoid selection bias.
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Figure 2.1: (Example) Profile displayed to the control group
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Notes. This figure shows how `iking a profile reveals the information about whether the potential
partner had `iked the focal user or not. (For illustrative purpose only. The image may be different on
the actual app). The `ike button turns red when the user chooses to `ike. If the potential partner had
`iked the focal user, both users will receive a notification about the mutual `iking. In addition to a
notification, a heart icon appears on the top right-hand corner. If the potential partner had not `iked
the focal user, neither a notification nor a heart icon appears.

Figure 2.2: How `iking a profile reveals information
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displayed to a user. A user is able to see the profile picture and detailed characteristics such

as age, ethnicity, education level, etc. Upon browsing the profile, a user can choose to `ike

and/or message.

A user can choose to `ike by either clicking a `ike button (or by swiping right). Similarly, a

user can choose to not `ike by simply not clicking the `ike button (or by swiping left). If the

user `ikes a profile, and if the person in the profile had already `iked the focal user, then

both users receive a pop-up notification about the mutual `iking (Figure 2b). In addition to

the pop-up notification about the mutual `iking, an icon appears next to the profile picture

(heart icon on the upper right-hand corner) indicating that the person in the profile had

`iked the focal user.42 Therefore, `iking a profile reveals whether or not the person in the

profile had `iked the focal user. If no notification nor a heart icon appears upon choosing

to `ike, it implies that the person in the profile had “not `iked” the focal user (Figure 2a).

This can happen if either (i) the person in the profile had browsed the focal user’s profile but

decided not to `ike, or (ii) the person in the profile hasn’t browsed the focal user’s profile yet

(i.e. the algorithm of MonCherie hasn’t yet displayed the focal user’s profile to the person in

the profile) and therefore hadn’t had an opportunity to decide whether or not to `ike the

focal user. The focal user is not able to distinguish between these two causes of “not `ikes”.

A new profile is displayed to a user immediately after a user sends a message or clicks the

“back” button on the phone. Also, if a user swipes in either direction as opposed to clicking

the `ike button, a new profile will be displayed to him unless a mutual `iking is reached, in

which case Figure 2b is displayed and the user can decide whether to send a message. On the

other hand, if a user clicks the `ike button instead of swiping right, he can continue browsing

the current profile (in this case, user sees Figure 2a if he hadn’t been `iked and sees Figure

2b if he had been `iked) and has to decide whether to send a message.
42The heart icon is for illustrative purpose only. A different icon may appear in the actual app.
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Figure 2.3: Profile displayed to the treatment group

2.4 The Experiment

In this section we describe the design of the experiment and how it changed the operation of

the app for the treatment group. The experiment was conducted on 100,000 newly registered

random users of MonCherie over three consecutive months.43 The three months are referred to
43The target population of 100,000 experimental users was randomly selected among newly registered users

during a seven-day period in 2016. These users account for approximately less than 1 percent of the entire
population of users of MonCherie as of 2019.
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as the pre-treatment period (1st month), treatment period (2nd month), and post-treatment

period (3rd month).44 On the first day of the treatment period (2nd month), randomly

selected 50,000 users received the following email:

Hey username,
You have been randomly selected to receive a super power - for the next 30 days,
we’re giving you the ability to know whether someone had liked you! Normally
this feature is restricted to paid premium users only. Enjoy!45

The remaining 50,000 users who serve as our control group received the following email:

Hey username,
It’s a good time to visit MonCherie! We’ve got a bunch of matches lined up just
for you. Enjoy!

Because the treatment was endowed on users by the platform without any required action

from the users’ side, users were unaware of being part of an experiment. Therefore, the

observer bias is not applicable.

Figure 3 illustrates what is displayed to a user in the treatment group when he opens the

app. When a profile is displayed to a user, he can immediately see whether the person in the

profile had `iked him or not. If the person in the profile had `iked the focal user, a heart

icon appears on the upper right-hand corner (Figure 3b). If the person in the profile had not

`iked the focal user, a heart icon is absent (Figure 3a). As aforementioned, a user is unable

to distinguish whether the person in the profile had browsed his profile and decided not to

`ike, or whether his profile was not browsed yet.
44The gift of treatment expired after 30 days.
45To disguise the identity of MonCherie (and the terminologies specific to the platform), the messages

presented in the paper are slighly modified from the actual messages that were sent to users.
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2.5 Data Description

For each of the 100,000 users in our experiment, we observe time-stamped actions (browsing,

clicking, `iking, and messaging) over the three months. As explained earlier, the three months

are pre-treatment period (1st month), treatment period (2nd month), and post-treatment

period (3rd month). For each user, we have several self-reported demographic variables, such

as gender, age, education level, ethnicity, body type. We also have information on users’

sexual orientation (heterosexual, homosexual, bisexual).46 We also observe time-stamped

actions and demographics for all users who have interacted with the experimental users in any

way (henceforth, correspondent users).47 The data on correspondent users’ `iking behavior

allows us to observe who had `iked the focal experimental user. In addition, we observe as to

whether a user was using a desktop or a mobile app, whether a user has a premium account

and whether the account is valid (whether or not the user is a spammer/bot as determined

by internal algorithm of MonCherie).

Out of our initial sample of 100,000 experimental users, we limit our sample to heterosexual

users who browsed at least one profile during the treatment period.48 We also limit our

sample to mobile app users because the design of the mobile app is much simpler than the

desktop version, which renders the analysis more trackable. We drop users with a premium

account to avoid selection bias and we also drop users with a non-valid account. This leaves

us with 16,119 male (7,930 treated, 8,189 control) and 7,112 female (3,470 treated, 3,642

control) experimental users. In our data, only 0.59 percent of the experimental users have

interacted with other members of the experiment, and only 0.4 percent of the users in the
46Only a few demographic variables were provided to us due to privacy concerns.
47Two users i and j have interacted with each other if either i or j (or both i and j) browsed and/or `iked

and/or messaged the other person
48A large number of users became inactive a few days after their first use of the app.
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treatment group have interacted with other members in the treatment group. Hence, we do

not worry about the contamination bias.

Table 2.1 summarizes characteristics of users in our sample, separately for men and women.49

We have self-reported information on users’ age, education level, body type and ethnicity.

Consistent with existing research that use data from other online dating services, there are

more men than women (16,119 men, 7,112 women). Men are on average 31 years old and

women are on average 34 years old. Among men and women who reported their education

level, approximately 55 percent received their final degree from a university, and less than

20 percent have a postgraduate degree. The majority of users on the platform are White

(approximately 60− 66 percent), followed by Hispanic (13 percent), Asian (10− 15 percent)

and Black (10− 12 percent). Test of randomization of the treatment is reported in Appendix

F.

49This table summarizes demographic characteristics of the experimental users only, not correspondent
users.
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Men Women
Variable Mean SD Median Obs Mean SD Median Obs
Age 31.3 9.6 29 16,119 34.0 11.3 31 7,112
HighSchool 0.13 0.3 0 5,178 0.09 0.3 0 2,482
TwoYear 0.18 0.4 0 5,178 0.16 0.4 0 2,482
University 0.54 0.5 1 5,178 0.57 0.5 1 2,482
PostGrad 0.15 0.4 0 5,178 0.18 0.4 0 2,482
Skinny 0.14 0.4 0 4,541 0.25 0.4 0 1,648
Average 0.67 0.5 1 4,541 0.54 0.5 1 1,648
LittleExtra 0.15 0.4 0 4,541 0.16 0.4 0 1,648
Overweight 0.04 0.2 0 4,541 0.05 0.2 0 1,648
Asian 0.10 0.3 0 7,137 0.15 0.4 0 3,638
White 0.66 0.5 1 7,137 0.60 0.5 1 3,638
Black 0.10 0.3 0 7,137 0.12 0.3 0 3,638
Indian 0.04 0.2 0 7,137 0.02 0.1 0 3,638
MidEastern 0.03 0.2 0 7,137 0.01 0.1 0 3,638
Hispanic 0.13 0.3 0 7,137 0.13 0.3 0 3,638
NativeAmerican 0.02 0.2 0 7,137 0.02 0.1 0 3,638
PacificIslander 0.01 0.1 0 7,137 0.01 0.1 0 3,638

Notes. Many users choose not to report some of their demographic information, which leads to
different number of observations for each demographic variable. In the data (prior to selecting
our sample), we also have users with the following education levels: LawSchool, MedSchool, and
PhD. In our final sample, although we do have correspondent users with these education levels,
we do not have experimental users with these education levels. This is because experimental
users with these education levels were dropped during our sample selection process (browsed at
least one profile, heterosexual, valid, non-premium, mobile app users). Note that Indian and
Asian are separately listed in this table. Although Indian is Asian, the data we received from
MonCherie had listed them separately. Therefore, we also list them separately.

Table 2.1: Summary Statistics of Users Characteristics
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2.6 Descriptive Statistics

2.6.1 Impact of the Treatment on User Activities

We first proceed by showing the effect of the treatment on user activities. From the perspective

of the focal user, there are two types of potential partners: (i) potential partners who had

`iked the focal user (henceforth “Likers”), and (ii) potential partners who did not `ike the

focal user (henceforth “NotLikers”). Since the treatment allows users to know whether the

potential partner had `iked him or not without taking any further action, it is natural to

think that the treatment would have differential impact on users’ activities depending on

whether the person in the profile is a Liker or a NotLiker.

In Table 2.2 we present summary statistics of user activities towards Likers, separately for

men and women. Column 1a (2a) summarizes activities of men (women) in the control group

and column 1b (2b) summarizes activities of men (women) in the treatment group. We also

report t-statistics (columns 1c and 2c) to show if there are any significant differences between

the two groups. For men, the treatment increases the profile clicks by 42.5 percent, increases

`ikes sent by 26 percent, and increases messages sent by 30 percent. We see a similar pattern

for women: treatment increases profile clicks by 55.5 percent, increases `ikes sent by 69.6

percent and increases messages sent by 37.9 percent.

We also test whether the treatment has an impact on the number of successful matches

achieved by our experimental users. While we do not observe whether users actually went

on an offline date, nor do we observe the actual content of the messages exchanged between

users, we do observe the number of messages exchanged. Prior research by Bapna2016 and

anecdotal evidence from the online dating industry has pointed out that exchange of three
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messages between potential couples is a good predictor of an actual online match, in which

phone numbers are exchanged or mates are asked out for an offline date. In fact, senior

executives of MonCherie revealed that they strongly believe that this measure of a match

is an accurate predictor of an offline date. Moreover, despite knowing the exact content of

users’ messages, MonCherie uses this metric as a measure of a successful match for their own

internal recommendation engine. We take a more conservative stance and define a successful

match as an exchange of at least six messages. 50Here we only consider “initiated” matches,

where at least 6 messages were exchanged upon the experimental user starting a conversation.

We find that the treatment increases men’s initiated matches with Likers by 50 percent and

increases women’s initiated matches with Likers by 33.3 percent.

Table 2.3 presents summary statistics of user activities towards NotLikers. Except for the

reduction in the number of `ikes sent by men in the treatment group, the treatment does

not lead to a significant difference in user activities towards NotLikers.

Summary statistics of user activities towards all potential partners (the sum of Likers and

NotLikers) are reported in Appendix G. There we show that due to a large number of users

in our data who received very small number of `ikes (more NotLikers than Likers), the

impact of the treatment on user behavior towards Likers is buried by user behavior towards

NotLikers.

2.6.2 Frictions and Sorting

The correlation in mate attributes has been widely documented and studied in previous

research across various disciplines. Consistent with the existing literature, matched couples
50Hitsch et al. (2010a) who had access to the actual content of the messages exchanged by users in their

online dating website report that it took a median number of 6 messages to reveal their phone number, email
address, or to say a key phrase like “get’s together” or “let’s meet”.
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Men Women
control treated t-stat control treated t-stat
(1a) (1b) (1c) (2a) (2b) (2c)

Number of users 7,930 8,189 3,470 3,642
Profiles clicked
Mean 4.0 5.7 13.245 11.0 17.1 10.674
Median 2 3 5 7
SD 7.3 9.3 17.0 29.9
Likes sent
Mean 1.100 1.387 6.319 1.935 3.282 6.902
Median 0 0 0 0
SD 2.696 3.054 6.295 9.706
Initiated messages
Mean 1.0 1.3 7.133 0.87 1.2 5.019
Median 0 0 0 0
SD 2.5 2.8 2.0 2.8
Initiated messages that led to match
Mean 0.2 0.3 4.211 0.3 0.4 3.855
Median 0 0 0 0
SD 0.8 0.9 0.9 1.2

Table 2.2: Summary statistics of user activities towards Likers
Notes. If the difference between the treatment and control group is significant (at the 5 percent level),
the t-statistics are in bold.

on MonCherie also display positive sorting patterns along various characteristics. In our data,

we find that age is strongly correlated across men and women (Pearson correlation coefficient

ρ = 0.71). Although small, years of education (ρ = 0.12), BMI (ρ = 0.11) and attractiveness

(ρ = 0.14) also display positive correlations. The numbers reported here are very similar to

those reported by Hitsch et al. (2010a). In Hitsch et al. (2010a), the correlation between

matched couples in the data is 0.7 in age, 0.12 in education, and 0.3 in attractiveness.

Our experiment reduces the search friction present in our platform for the treatment group

by revealing the information about `ikes. By looking at how the treatment affects sorting

patterns between matched couples, we can get insights on the impact of frictions on assortative

matching. To compare the sorting patterns between the two groups, we first construct a
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Men Women
control treated t-stat control treated t-stat
(1a) (1b) (1c) (2a) (2b) (2c)

Number of users 7,930 8,189 3,470 3,642
Profiles clicked
Mean 80.1 78.9 -0.420 28.9 29.5 0.388
Median 21 21 10 9
SD 183.3 177.5 131.6 68.1
Likes sent
Mean 94.5 82.5 -2.403 13.4 14.0 0.319
Median 8 9 0 0
SD 3.8 3.2 77.4 70.5
Initiated messages
Mean 21.4 21.0 -0.332 2.3 2.2 -0.497
Median 2 2 0 0
SD 65.3 65.7 8.1 8.0
Initiated Messages that led to match
Mean 1.36 1.38 0.178 0.45 0.46 0.12
Median 0 0 0 0
SD 4.7 4.9 1.6 1.7

Table 2.3: Summary statistics of user activities towards NotLikers
Notes. If the difference between the treatment and control group is significant (at the 5 percent level),
the t-statistics are in bold.

measure of attribute difference (henceforth “attribute difference”) that can be used to test

whether the treatment leads to a significantly different sorting pattern between a matched

man and a woman. Specifically, the attribute difference between a man m and a woman w is

obtained as ∆ = |Xm−Xw| where Xm and Xw are m and w’s characteristics, respectively. We

obtain attribute difference between couples for age, education level, BMI, and attractiveness.51

For ethnicity, we construct the attribute difference as a dummy variable that takes value 1

when m and w are of different ethnicity, and 0 otherwise.52

51Education level in our data is categorical. We transform education level into years of education in the
following way: University is normalized to 0; High school = −4; Two-year college = −2; Masters = 2; Law
School= 3; MedSchool = 3; PhD = 6 (6 years PhD is the new black). For BMI, we obtain the mean BMI for
the following categories: skinny, average, heavier, and overweight from World Health Organization (WHO)
Classification for Obesity Corresponding to Body Mass Index (BMI).

52We use Asian, Black, White, Indian, Hispanic, MidEastern, NativeAmerican and Pacific Islander as ethnic
categories. Although Indian is Asian, MonCherie puts them into a different category. Users of MonCherie
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We additionally create a synthetic variable that measures the attractiveness of a user, which

is the total count of `ikes received divided by the sum of `ikes and “not `ikes” received.

More specifically, the measure of attractiveness is obtained for each user i as follows:

attractivenessi =
#`ikesReceivedi

#`ikesReceivedi + #Not`ikesReceivedi

This measure is then converted to a decile, separately for men and women (with 1 being least

attractive and 10 being most attractive).

Table 2.4, columns (1a) and (1b) display mean attribute differences (standard deviation in

parentheses and number of observations in brackets) of couples who matched with Likers, for

the control and treatment group, respectively. Column (1c) reports the difference between the

two groups. Interestingly, attribute differences of the treatment group are significantly larger

compared to those of the control group, across all dimensions. The age difference between

couples in the treatment group (∆ = 4.6) is on average 0.3 years (or 7.2 percent) greater

than the age difference between couples in the control group (∆ = 4.3); The difference in

years of education between couples in the treatment group (∆ = 1.9) is on average 0.18 years

(or 10.4 percent) greater than that of couples in the control group (∆ = 1.7); Approximately

58 percent of the users in the treatment group matched with partners of different ethnicity,

which is 5 percent greater than that of the control group (53 percent); The BMI difference

between couples in the treatment group (∆ = 4.3) is 7.5 percent greater than the BMI

difference between couples in the control group (∆ = 4.0); The attractiveness difference

can choose mutiple ethnicities to describe themselves (e.g. Asian & White). We classify all users who choose
more than one ethnicity as “other ethnicity”. If both m and w fall into other-ethnicity category, the attribute
difference equals 1.
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between couples in the treatment group (∆ = 2.87) is roughly 5 percent greater than the

attractiveness difference between couples in the control group (∆ = 2.73).53

We also use the Pearson correlation coefficient as an alternative meaure of sorting and

report the correlation patterns in matches with Likers in Table 2.4 columns 2a−2b. Fisher’s

z-statistic (Column 2c) is used to test whether correlation coefficients between the two groups

are statistically different. We find that our previous findings holds for age and attractiveness:

the correlation in age for the treatment group (ρ = 0.77) is 4 percent less compared to the

control group (ρ = 0.8); the correlation in attractiveness for the treatment group (ρ = 0.11)

is approximately 50 percent less compared to the control group (ρ = 0.16). The correlation

in education level for the treatment group is also slightly less than the control group, but the

difference between the two groups is not significant.

Tables 2.5 shows differences in degree of sorting between the treatment and control group

along various attributes when they matched with NotLikers. Since the focal user is not

able to distinguish whether the NotLiker choose to not `ike the focal user, or whether they

have not yet seen the focal user’s profile, the impact of treatment on assortative matching is

ambiguous.

Our results provide evidence suggesting that the treatment reduces the degree of sorting

between couples. One possible explanation for this is that the treatment triggers users to

initiate a match with potential partners whom they otherwise wouldn’t in the absence of

the treatment. Figure 2.5 plots the mean probability of initiating a conversation through

messaging against the probability of receiving a reply (henceforth “match probability”). We

can see that the probability of messaging is increasing in match probability. Table 2.6 reports
53When we do not convert the attractivenes measure into a decile, this result is reversed. We decided

to convert attractiveness into a decile separately for men and women given vastly different patterns of
attractiveness scores between the two genders.
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Matches between m and Liker w
Attribute Difference Pearson Correlation Coefficient

control treatment Difference control treatment Fisher’s z
(1a) (1b) (1c) (2a) (2b) (2c)

Age 4.280 4.588 0.308*** 0.800 0.770 3.342***
(4.303) (4.670) (0.009) (0.009)
[3,271] [4,289] [3,271] [4,289]

Education 1.709 1.887 0.179*** 0.121 0.118 0.082
(1.487) (1.533) (0.025) (0.023)
[1,287] [1,631] [1,287] [1,631]

Ethnicity 0.531 0.577 0.046***
(0.499) (0.494)
[1,586] [2,141]

BMI 4.017 4.323 0.306** 0.017 0.054 -0.884
(3.490) (3.654) (0.028) (0.033)
[994] [1,224] [994] [1,224]

Attractiveness 2.730 2.872 0.139*** 0.161 0.108 2.301***
(2.090) (2.198) (0.019) (0.016)
[3,196] [4,182] [3,196] [4,182]

Notes. Standard deviation (for absolute diff) in parentheses. Number of observations in brackets. When
exchanging at least 6 messages, pairs sent at least 3 messages each.
*Significant at the 10% level; **significant at the 5% level; ***significant at the 1% level.

Table 2.4: Attributes Differences with Initiated Matches

the summary statistics of match probabilities conditional on sending a message. The table

shows that there is a greater probability of receiving a reply from a Liker than from a NotLiker

(0.46 versus 0.13). A user who might be discouraged from sending a message under the

control condition due to the (ex-ante) low probability of receiving a reply, may decide to send

a message under the treatment condition once he sees that the other party had `iked him.

To test this, we need to compare the two groups’ likelihood of messaging to Likers for (ex-ante)

low and high values of match probabilities. However, the expected match probabilities for

the two groups are different. All else identical, the expected match probability with a Liker

will be greater for a user in the treatment group than a user in the control group (unless

the user in the control group `ikes a profile and find out that he was `iked). In order to
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Notes. Predicted match probabilities (probability of receiving a reply to a message) are converted
into 50 quantiles.

Figure 2.4: Probability of messaging with respect to match probabilities

Notes. Predicted match probabilities (probability of receiving a reply to a message) are converted
into 50 quantiles.

Figure 2.5: Probability of messaging to a LIker with respect to match probabilities
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Matches between m and NotLiker w
control treatment Difference
(a) (b) (c)

Age 5.404 5.403 -0.000
(5.303) (5.326)
[12,888] [13,505]

Education 1.788 1.910 0.122***
(1.423) (1.492)
[4,808] [4,717]

Ethnicity 0.559 0.556 -0.003
(0.497) (0.497)
[6,138] [6,319]

BMI 4.311 4.218 -0.092
(3.830) (3.654)
[3,694] [3,923]

Attractiveness 3.051 2.942 -0.110***
(2.337) (2.265)
[12,355] [12,974]

Notes. Standard deviation in parentheses. Number of observations in brackets. When exchanging at
least 6 messages, pairs sent at least 3 messages each.
*Significant at the 10% level; **significant at the 5% level; ***significant at the 1% level.

Table 2.5: Attributes Differences with Initiated Matches

Mean SD
Liker 0.463 0.499

NotLiker 0.131 0.338

Table 2.6: Probability of receiving a reply to a message

make a correct comparison, we need to use identical expected match probabilities for the

two groups. Hence, we estimate expected match probabilities using logistic regression under

the assumption that all users are in the control group. Assuming that all users are in the

treatment group will not change the inference that we derive from this exercise. Figure ??

plots the difference (between the treatment and control group) in probability of messaging to

Likers against the match probabilities. Specifically, this difference is obtained by subtracting

the control group’s mean probability of messaging to a Liker from that of the treatment group,

separately for each quantile of match probability. The positive value of this difference implies
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that the treatment group is more likely to send a message compared to the control group,

and vice versa. The difference in the figure is downward sloping and is always positive for

sufficiently low match probabilities (the cutoff value of the match probability is approximately

at 0.5). The positive difference for lower values of match probabilities suggest that users in

the treatment group are more likely (compared to the control group) to message those who

have `iked them who ex-ante are less likely to respond.

So far, we have shown that the treatment leads to less sorting for matches achieved with

Likers, suggesting that reducing search frictions may lower sorting between couples. The

patterns observed in this section, however, are merely suggestive of the impact that frictions

play on sorting and are not conclusive: First, the experiment reduces the search friction for

the treatment group, but it does not reduce the search friction for the correspondent users who

have interacted with our treatment group. Therefore, the limitation of our experiment is that

it reduces the search friction for users on only one side of the market. Second, the treatment

does not remove all frictions. Although the treatment reduces the uncertainty regarding

preferences of potential partners to some extent, users nevertheless still face uncertainty about

whether they will achieve a match. If the cost of initiating a contact is non-negligible, the

decision to initiate a contact would depend on the probability of a match. Therefore, a user

may decide to forgo a desirable partner if the expected probability of a match is sufficiently

low. In an environment where only preferences shape the formation of a match, the cost of

initiating a contact should be non-existent.

In the following section we develop a model of costly search (as well as costly initial contacting)

that incorporates preference heterogeneity across users. The estimates from the model allows

us to simulate equilibrium matches in a frictionless environment where only preferences shape

the matching outcomes.
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2.7 Model

2.7.1 Overview

We first present a brief overview of the model that summarizes the actions that a user can take

at each stage of the search process. Here we describe the model only from the perspective of

a male user m, but it is identical for a female user w. The details of each stage are described

in the following subsections.

At the beginning of each exogenously given session τ , m chooses to browse kτ number of

profiles that maximizes his net benefit of browsing. The cost of browsing kτ profiles is

cbrowse
m (kτ ). m then browses through each of the profiles w ∈ {w1,w2, ...., wkτ} that appear

randomly until the number of profiles that he browsed reaches kτ , at which point he stops.

• For each of the kτ profiles, m goes through the liking stage (LS) followed by the message

stage (MS):

1. Liking stage (LS): m chooses action dmw ∈ {like, nlike} which indexes his decision to

`ike or not `ike w’s profile (dmw = like if `ike, and dmw = nlike if not `ike). `iking

w’s profile is an indirect way of sending the signal of interest, which leads to a positive

probability of a match. If m chooses dmw = like, he has to pay a cost clikem .

• Two types of users: treated (hm = treated) and control (hm = control):

(a) If hm = treated, m can observe at the beginning of the liking stage (prior to

choosing action dmw), whether w had `iked him or not.

(b) If hm = control, m cannot observe whether w had `iked him or not. This

information will be revealed to him only if and after he chooses dmw = like.
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2. Message stage (MS): m has to choose µmw ∈ {msg, nmsg} , which indexes his decision

whether or not to message w (µmw = msg if message, and µmw = nmsg if not message).

Sending a message is a direct way contacting w. If µmw = msg, m has to pay a cost

cmsg
m . If m had chosen dmw = like during the liking stage, there is a positive probability

of matching with w even if m chooses to not message her (through indirect signaling,

i.e. `iking, at the liking stage.).

2.7.2 Model Details

We consider an online dating platform where in each period, NM men and NW women are

searching for a partner. Time is discrete, and we assume that discounting across time is

negligible, i.e. time discount factor ρ ≈ 1. This assumption had been used in existing

research that use data from online dating platforms (Hitsch et al. (2010a); Fong (2018)).

Each man is indexed by m ∈ M = {1, 2, ..., NM}. Similarly, each woman is indexed by

w ∈ W = {1, 2, ..., NW}. In each period, a random profile of a woman is displayed to a man.

The utility to a man of matching with a woman depends on own and woman’s characteristics.

A match occurs if both man and woman agree to match. We assume that users do not agree

to match if the net expected utility from matching is lower than each user’s reservation utility.

In each period, women’s profiles are drawn randomly from a distribution FW . We assume

that the distribution of single users’ profiles is exogenously given and is stationary over time.

To guarantee stationarity, we assume that users who are matched exit the market and are

immediately replaced by their “clones” as in McNamara and Collins (1990), Burdett and

Coles (1997), Bloch and Ryder (2000) and Adachi (2003).54

54A clone of a man m (woman w) has identical characteristics as man m (woman w).
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Latent Utility

We assume that partner preferences depend on observed own and partner attributes, and

idiosyncratic preference shock emw which follows i.i.d logistic distribution:

UM(m,w) = UM(Xm, Xw; ΘM) + emw (2.1)

where XM and XW are m and w’s observed characteristics which follow a distribution FM

and FW , respectively. ΘM is a (column) vector that represents men’s preferences (similarly,

ΘW represents women’s preferences).

The latent utility that m gets if he matches with w is parameterized as

UM(Xm, Xw; ΘM) = x′wβM + (|xw − xm|′+)β+
M + (|xw − xm|′−)β−M

+
∑Neth

r,s=1 1{xethmr = 1 and xethws = 1} · βethM,rs

(2.2)

where xm and xw are m and w’s characteristics which have continuous values, respectively.

|xw − xm|+ is the difference between m and w’s attributes if this difference is positive,

and |xw − xm|− is the absolute value of this difference if this difference is negative. More

formally, |xw − xm|+ = max(xw − xm, 0) and |xw − xm|− = max(xm − xw, 0). xethm and xethw

are sets of dummy variables indicating m and w’s ethnicity, respectively. For example,

xethm,asian = 1 if m is Asian and 0 otherwise. The set of preference parameters to be estimated

is ΘM = (βM , β
+
M , β

−
M , β

eth
M ) for men and ΘW = (βW , β

+
W , β

−
W , β

eth
W ) for women.

Information Structure

Before proceeding to describe the actions that a user can take at each stage of the search

process, we first lay out users’ information structure for each profile that he is browsing. This
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information structure depends on the focal user’s type (treated or control), the stage of the

search process (liking stage or message stage), and the actions taken at the liking stage.

Let Ωfull
mw = {Xw, emw, `wm} be the information set of m when he has full information about

w. Under full information, m observes Xw, emw as well as `wm, which is a dummy variable

that takes value 1 if w had `iked m and 0 otherwise. Denote Ωstage,hm
mw as the information

that m of type hm has about w at each stage, stage ∈ {LS,MS}.

The information set of m about w at the liking stage (LS) is given by

ΩLS,hm
mw =


Xw, emw,E[`wm|Xm, Xw] if hm = control

Xw, emw, `wm if hm = treated
(2.3)

At the liking stage, unlike treated users who have full information about w, users in the

control group do not observe the true value of `wm, and therefore form an expectation about

`wm conditional on own and w’s characteristics.

As explained earlier, the exact value of `wm will be revealed to users in the control group if

they choose to `ike a profile (dmw = like) during the liking stage. Therefore, at the message

stage, all users except those in the control group who have chosen to not `ike a profile

will have full information about w. The information set at the message stage can then be

summarized as follows:

ΩMS,hm
mw =


Xw,E[`wm|Xm, Xw], emw if hm = control & dmw = nlike

Xw, emw, `wm if hm = treated or (hm =control & dmw = like)
(2.4)
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Formation of consideration set

When a user opens the app, profiles are displayed to him sequentially in a random fashion.

User must engage in search to browse the pool of potential partners. Because browsing is

costly, he browses only a limited number of profiles, which makes up his consideration set. The

characterization of a consideration set requires an assumption on the type of search method

that is employed by the user (simultaneous vs sequential search). In simultaneous search,

once a user decides how many and which alternatives to consider, he searches and gathers

information from all alternatives in his consideration set to resolve uncertainty (Stigler (2961);

Roberts and Lattin (1991); Mehta et al. (2003); Honka (2014); Pires (2016)). Uses then

chooses an alternative from his consideration set that gives the highest utility. In sequential

search on the other hand, user calculates each alternative’s reservation utility, ranks them in

a decreasing order, and then starts searching with the top-ranked alternative, and work his

way down (Weitzman (1979); Kim et al. (2010); Chen and Yao (2017)).

The traditional simultaneous search model, in which a user samples a fixed number of

alternatives and purchase the alternative that gives the highest utility, is not directly applicable

in our setting. This is because (i) there is a positive probability of being rejected by the

other party, and (ii) profiles are displayed to a user in a random fashion and hence the user

cannot choose which profiles to consider. For the same reason, we are not able to apply the

sequential search model. We therefore consider a variant of a simultaneous search model,

where a user chooses how many profiles to search, but does not decide on which alternatives

to consider. We assume that the user chooses a fixed number (a number of profiles to browse)

that maximizes the sum of the expected utility minus the total cost of browsing those profiles.

While we observe the number of profiles browsed by each user during one month treatment

period of our data, we do not know how many profiles the user had browsed (or will browse)
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during his entire course of search at the platform. We cannot simply estimate the cost of

browsing based on the total number of profiles browsed during one month because users will

continue browsing more profiles in following months. We therefore assume that users choose

a fixed number (of profiles to browse) at the beginning of each exogenously given “session”.

While we observe time-stamped actions for each user, we do not observe session IDs (nor

do we know whether a user opened/closed the app). Therefore, we define sessions based on

minutes elapsed between user’s activities. Specifically, we define a new session if 180 minutes

(3 hours) elapse without a user taking any action.

Specifically, m’s net expected utility of a random profile (the expected utility minus the

expected utility of staying single minus the expected costs of messaging and/or liking),

denoted as z, is an i.i.d. draw from a distribution FZ . At the beginning of each session τ , m

chooses to search kτ profiles that maximizes his net benefit of browsing, denoted as Γmτ (kτ ),

i.e. the sum of the net expected utility among the browsed profiles minus the total cost of

browsing

Γmτ (kτ ) = kτ ·
∫
zfz(z)dz − cbrowse

m (kτ ) (2.5)

where cbrowse
m (kτ ) is the total cost of browsing kτ profiles and is a convex function of kτ . This

cost can be interpreted as time and cognitive effort spent on browsing kτ profiles. A user

picks the number kτ which maximizes his net benefit of browsing. If a user chooses to browse

kτ profiles, he has to pay a total cost cbrowse
m (kτ ), but will have kτ profiles to browse from.

This describes how a user in our model forms his consideration set for each session. Once

a user has chosen the size of his optimal consideration set, he goes through the liking and

message stage for each randomly appearing profile w ∈ {w1,w2, ...., wkτ} for the first kτ

random profiles that are displayed to him during session τ . In what follows, we remove the
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subscript τ to simplify the exposition. Next, we first describe the message stage and then

describe the screening stage in a backwards induction manner.

Message Stage

Let VM(m) denote man m’s expected utility of remaining single and continuing the search.

Similarly, let VW (w) denote woman w’s expected utility of remaining single and continuing

the search. We assume that VM(m) and VW (w) do not change across the browses. This is

because while the user only browses kτ profiles during session τ, he can continue browsing

additional profiles in the next session. In addition, the user also has an outside option of

searching for a partner offline.55 For the moment, let us suppose that these expected utilities

are given. Conditional on his choice dmw ∈ {like, nlike} at the liking stage, the expected

utility at the message stage from choosing µmw ∈ {msg, nmsg} is given by

EUMS
mw (msg|dmw) =


−cmsg

m + UM (m,w) · π̃MS
mw (msg|dmw) + VM (m) ·

(
1− π̃MS

mw (msg|dmw)
)

if µmw = msg

UM (m,w) · π̃MS
mw (nmsg|dmw) + VM (m) ·

(
1− π̃MS

mw (nmsg|dmw)
)

if µmw = nmsg

where cmsg
m is the cost of sending a message, and can be interpreted as (i) time and effort to

compose a message, and/or (ii) aversion towards experiencing negative emotion in case w

does not respond.

π̃MS
mw (µmw|dmw) is the expectation (formed at the message stage) about the match probability,

which depends on both µmw and dmw. Specifically, π̃MS
mw (µmw|dmw) can be written as

π̃MS
mw (µmw|dmw) = E∆MS

hm

[
πmw(dmw, µmw|Xm, Xw, `wm)|ΩMS

mw , dmw

]

where πmw(dmw, µmw|Xm, Xw, `wm) is the match probability when m chooses a sequence

of actions (dmw, µmw) conditional on Xm, Xw and `wm. The expectation is taken with
55This assumption may be the limitation of the current version of this paper which we hope to address in

the future.
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respect to ∆MS
hm

= Ωfull
mw \ΩMS,hm

mw , which is the discrepancy between the full information

set and the information that type hm has at the beginning of the message stage.56 If

dmw = like , then π̃MS
mw (nmsg|dmw) > 0 due to the indirect signaling effect of interest.

We assume that if m neither `ikes not messages w, the match probability is zero, i.e.

πmw(nlike, nmsg|Xm, Xw, `wm) = 0.We also assume that the match probability is independent

of dmw if m messages w, i.e. πmw(like, msg|Xm, Xw, `wm) = πmw(nlike, msg|Xm, Xw, `wm).

m will choose to message w if and only if

EUMS
mw (msg|dmw) ≥ EUMS

mw (nmsg|dmw). (2.6)

Denote ∆π̃MS
mw as the expected difference in match probability from messaging and not

messaging

∆π̃MS
mw =


π̃MS
mw (msg|like)− π̃MS

mw (nmsg|like) if dmw = like

π̃MS
mw (msg|nlike)− π̃MS

mw (nmsg|nlike) if dmw = nlike
(2.7)

Since π̃MS
mw (nmsg|nlike) = E∆MS

hm

[
πmw(nlike,nmsg|Xm, Xw, `wm)

]
= 0, with a bit of algebra

one can easily see that condition 2.6 can be rewritten as

UM(m,w)− VM(m) ≥ cmsg
m

∆π̃MS
mw

(2.8)

Since emw follows i.i.d logistic distribution, the probability of sending a message to w can be

written as

Pr(µmw = msg|dmw) =
exp
(
UM(Xm, Xw; ΘM)− VM(m)− cmsg

m ·∆π̃MS
mw (msg)−1

)
1 + exp

(
UM(Xm, Xw; ΘM)− VM(m)− cmsg

m ·∆π̃MS
mw (msg)−1

) (2.9)

56If Ωfull
mw \ΩMS,hm

mw = ∅, then π̃MS
mw (µmw|dmw) = πmw(dmw, µmw|Xm, Xw, `wm).
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Liking Stage

The utility at the liking stage from choosing dmw ∈ {like,nlike} is

ULS
mw(dmw) =


−clikem + εlike

mw if dmw = like

εnlike
mw ifdmw = nlike

(2.10)

where clikem is the psychological cost that m incurs if he chooses to `ike w. This cost can be

incurred due to several reasons, some of which can be: (i) m simply does not find w attractive

enough to `ike her, (ii) aversion towards the negative emotion that will be incurred in case w

does not `ike him back (Baumeister and Dhavale (2001)), (iii) negative emotion associated

with rejecting w after having sent the `ike signal to trigger w’s response. Research has

shown that the object of unwanted affection may experience annoyance, frustration, and that

rejecting the other’s overtures may cause guilt, discomfort, and other distress (Baumeister et

al. (1993)). εlike
mw and εnlike

mw are error terms observed by m (but unobserved by the researcher)

that affects m’s decision to `ike w. We assume that εlike
mw and εnlike

mw are distributed i.i.d Type

I EV.

The expected utility from both stages (liking stage & message stage) is

EUBothStages
mw (dmw) = ULS

mw(dmw)+max

{
E∆LS

hm

[
EUMS

mw (msg|dmw)|ΩLS
]
,E∆LS

hm

[
EUMS

mw (nmsg|dmw)|ΩLS
]}

(2.11)

where the expectation is taken with respect to ∆LS
hm

= Ωfull\ΩLS,hm , the discrepancy between

the full information set and the information that type hm knows at the beginning of the liking

stage.57 Since πmw(nlike, nmsg|Xm, Xw, `wm) = 0, we have E∆LS
hm

[
EUMS

mw (nmsg|nlike)|ΩLS
]

=

57Note that the expectation about the match probability at the liking stage is π̃LS
mw(dmw, µmw) =

E∆LS
hm

[
πmw(dmw, µmw|Xm, Xw, `wm)|ΩLS

mw

]
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VM(m). The choice-specific expected utility from both stages can then be written as

EUBothStages
mw (dmw) =



−clikem + εlikemw

+ max

{
E∆LS

hm

[
EUMS

mw (msg|like)|ΩLS
]
,E∆LS

hm

[
EUMS

mw (nmsg|like)|ΩLS
]}

if dmw = like

εnlike
mw + max

{
E∆LS

hm

[
EUMS

mw (msg|nlike)|ΩLS
]
, VM (m)

}
if dmw = nlike

m will choose dmw = like if and only if

EUBothStages
mw (like) ≥ EUBothStages

mw (nlike)

Let EUBothStages
mw (dmw) = ĒU

BothStages
mw (dmw) + edmwmw . Since εlike

mw and εnlike
mw follow i.i.d Type I

EV distribution, the probability of choosing dmw = like is

Pr(dmw = like) =
exp
(
ĒU

BothStages
mw (like)− ĒUBothStages

mw (nlike)
)

1 + exp
(
ĒU

BothStages
mw (like)− ĒUBothStages

mw (nlike)
) (2.12)

2.7.3 Removing frictions and the Gale-Shapley problem

Suppose that all costs are removed, i.e. cbrowse
m = clikem = cmsg

m = 0 (similarly, cbrowse
w = clikew =

cmsg
w = 0). Consider m’s decision problem of whether to send a message to w. The condition

in equation 2.8 reduces to

UM(m,w) ≥ VM(m). (2.13)

The match probability no longer appears in the threshold condition in equation 2.13: m

messages as long as the utility from a match is greater than the expected value of remaining

single. Now consider m’s decision to `ike w. The decision to `ike no longer affects the
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threshold condition at the message stage through its impact on match probability. εlike
mw and

εnlike
mw are the only factors that affect m’s decision to `ike w. To simplify the analysis, we

remove the redundancy of deciding whether to `ike when all the costs are set to zero. That

is, we assume that messaging is the only way of contacting a potential mate when all the

costs are removed.

In a frictionless environment in which all the costs are removed, the expected value of

remaining single can be characterized as a system of Bellman equations for man m and

woman w

VM(m) = ρ
∫
UM(m,w)Pr(match) + VM(m)

(
1− Pr(match)

)
dFW (w)

VW (w) = ρ
∫
UM(m,w)Pr(match) + VM(m)

(
1− Pr(match)

)
dFM(m)

(2.14)

where Pr(match) = Pr (UM(m,w) ≥ VM(m) & UW (w,m) ≥ VW (w)). The system of equa-

tions above defines a monotone iterative mapping that converges to a profile of reservation

utilities
(
V GS
M (m), V GS

W (w)
)
solving the system, and thus characterizing the stationary equilib-

rium in this market. The equilibrium reservation utilities
(
V GS
M (m), V GS

W (w)
)
can be thought

of as person-specific prices that clear the demand and the supply of that person.

Adachi (2003) shows that as ρ→ 1, the set of equilibrium outcomes in a decentralized search

model reduces to the set of stable matchings in a corresponding Gale-Shapley marriage

problem. A stable match is defined, following Gale and Shapley (1962), as a pairing where

there are no pairs (m,w) who are willing to abandon their partners and match with each

other. Specifically, Adachi (2003) shows that the system of Bellman equations in (2.14)

coincide with the following system of equations characterizing the set of stable matchings in

84



www.manaraa.com

a Gale-Shapley marriage problem:

V GS
M (m) = maxW∪{m}

{
UM(m,w)|UW (w,m) ≥ V GS

W (w)
}

V GS
W (w) = maxM∪{w}

{
UW (w,m)|UM(m,w) ≥ V GS

M (m)
} (2.15)

This result is intuitive: If time is not discounted, and if there are no search costs (costs

of browsing, as well as the costs of `iking and messaging) each man continues the search

process until he finds a woman such that UM(m,w) ≥ V GS
M (m) and UW (w,m) ≥ V GS

W (w).

Then a man will be matched with the best woman who is willing to match with him, and

vice versa. However, this is how the set of stable matchings are characterized in Gale-Shapley

problem. Henceforth we denote V GS
M (m) and V GS

W (w) as the expected utility of staying single

in a frictionless environment for man m and woman w, respectively.

Let us first describe how we estimate VM(m) and VW (w) in the presence of frictions. As

mentioned earlier, we assume that VM (m) and VW (w) remain constant across browses. Ideally,

we want to estimate these reservation values using user-specific fixed effects following Hitsch

et al. (2010a) and Banerjee et al. (2013). However, not only is this approach computationally

burdensome due to large number of users in our sample, but it is also unsuitable in our

setting due to selection issue: in order to include user-specific fixed effects, we need to drop

users who haven’t `iked and/or messaged any profiles. However, since treatment affects the

way users `ike and message, dropping these individuals may bias our results.

Therefore, we estimate the reservation values of remaining single using K-means clustering,

where we classify users into groups based on their observed characteristics. K-means is an

unsupervised learning approach that partitions the dataset intoK pre-defined non-overlapping

clusters. Each user is assigned to a cluster such that the sum of the squared distance between

the users’ characteristics and the cluster’s centroid (arithmetic mean of all users’ characteristics

that belong to that cluster) is at the minimum. In this paper we use K = 10. Ex ante, the
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expected value of remaining single should be identical for the control and treatment group.

This is because prior to actually browsing a specific profile, users in both groups do now

know the true value of `wm and have to form expectations about it. Therefore, we do not

include the treatment status as a feature when partitioning users into clusters.

Then the question is how to obtain the expected value of remaining single in the absence of

frictions? When frictions are present, users search Km profiles on the platform, while also

having the option of searching for partners offline. When frictions are not present, users can

search on the site forever, but also have the option of searching offline. Since we cannot

estimate V GS
M (m) from the data, we use VM (m) and VW (w) estimated from the model as the

expected value of remaining single when simulating matches in a frictionless environment.

Due to costs incurred while searching K profiles, we have V GS
M (m) ≥ VM(m). Hence, by

using VM(m) we are underestimating the expected value of remaining single in a frictionless

environment, making users “less selective”.58 However, we do not think that this will affect our

results for the following reason: when simulating matches using deferred-acceptance algorithm

(which we describe in more detail later in the text), each man ranks all women from the most

preferred to the least preferred. Then, each man makes an offer to his most preferred woman

and the woman either accepts or declines the offer. Men whose offers have been declined then

make an offer to his next most-preferred woman, and this process continues until all men

exhaust the list of women that give utility greater than their reservation utility. Hence the

underestimation of V GS
M (m) is a problem only to the extent that users match with partners

whose utility is close to VM(m). Our simulation results show that the average utility of a

matched partner is approximately 780 percent greater than VM(m) and 95 percent of users
58Whether this will bias will create more sorting or less sorting is an empirical question: If preferences are

the main determinants of sorting, then underestimating VM (m) will lead to less sorting. On the other hand, if
search frictions are the main determinants of sorting, then underestimating VM (m) will lead to more sorting.
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matched with a partner whose utility is at least 34 percent greater than VM(m).59 Since the

majority of matches are with partners whose utility is far above from VM (m), underestimation

of the reservation value should not affect our results.

2.8 Estimation

2.8.1 Probability of a match

We estimate m’s beliefs about the match probability at each stage directly from the data. In

particular, we use a binary logit specification to model the probability of receiving a reply

conditional on own and potential partner’s attributes. In addition, the probability of a match

depends on whether or not w had `iked m. Since `iking is costly, w will `ike m only if

UW (w,m) is sufficiently high. When UW (w,m) is sufficiently high, w is more likely to accept

m’s offer.

Let Respondlike
wm be a binary variable that equals 1 if w responds to m’s `ike by sending a

message to m and 0 otherwise.60 We estimate the following equation using logistic regression:

Respondlike
wm = UW (Xw, Xm; ΘW ) + ψlikeLlike

wm + ewm (2.16)

where UW (·) is defined similarly as in equation 2.1. L`wm is a variable that equals `wm if m is

in the treatment group and equals E[`wm|Xm, Xw] otherwise:

L`wm = `wm
hm · E[`wm|Xm, Xw]1−hm . (2.17)

59Approximately 99 percent of users matched with a partner whose utility is at least 6 percent greater
than VM (m).

60Note that here we index the subscript as wm as opposed to mw. This is to reflect w’s preferences and
decisions towards m
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The parameter ψlike is the effect of L`wm on the probability of responding to m’s `ike. We use

the predicted values from equation 2.1 as the probability of a match from only sending a `ike.

Similarly, let Replymsg
wm be a dummy variable that takes value 1 if w replies to m’s message

and 0 otherwise. We estimate the following equation using logistic regression:

Replymsg
wm = UW (Xm, Xw; ΘW ) + ψmsg

stg L
msg,stg
wm + ewm (2.18)

where

Lmsg,stg
wm =


`wm

hm · E[`wm|Xm, Xw]1−hm if stg = LS

`wm
hm ×

(
`wm · 1{dmw = like}+ E[`wm|Xm, Xw] · 1{dmw = nlike}

)1−hm
if stg = MS

(2.19)

and ψmsg
stg is the effect of Lmsg,stg

wm on the probability of replying to m’s message. Note that the

value of Lmsg,stg
wm depends on whether m is at the liking stage or at the message stage. If m

is at the liking stage, Lmsg,LS
wm equals `wm if m is in the treatment group and E[`wm|Xm, Xw]

otherwise. At the message stage, users in the control group who have chosen dmw = like will

find out the true value of `wm. The value of Lmsg,MS
wm for these users, as well as users in the

treatment group, equals `wm. For users in the control group who have chosen dwm = nlike,

Lmsg,MS
wm equals E[`wm|Xm, Xw]. We use the predicted values from equation 2.18 as the

probability of a match from sending a message.
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2.8.2 Likelihood

We maximize the joint likelihood of m’s decisions in consideration, liking and message stages,

for each of the profiles browsed. The likelihood of our model is given by

L =
N∏
m=1

Tm∏
τ=1

Prmκτ ζmκt
Jw∏
w=1

(
Prmwd · Prδmwmwµ|mwd

(
1− Prmwµ|mwd

)1−δmw
)
ϑmw

×
(

(1− Prmwd) · Prδmwmwµ|mwd
(
1− Prmwµ|mwd

)1−δmw
)1−ϑmw

(2.20)

where Prmκτ is the probability that m chooses to browse κ number of profiles in session

τ , Prmwd is the probability that m `ikes w, and Prmwµ is the probability that m messages

w. ζmκτ is a binary variable indicating the number of profiles browsed in session τ ; ϑmw

indicates the decision made at the liking stage (ϑmw = 1 if dmw = like, ϑmw = 0 otherwise)

and δmw indicates the decision chosen at the message stage (δmw = 1 if µmw = msg, δmw = 0

otherwise).

Note that the probability to browse κ profiles in session τ , Prmκt, does not have a closed form.

We therefore follow Honka (2014) and Honka et al. (2017) and use a simulation approach

to calculate them. We use a kernel-smoothed frequency simulator (McFadden, 1989) in the

estimation and smooth the probabilities using a multivariate scaled logistic CDF (Gumbel,

1961):

F (ω1, ..., ωΛ; s1, ..., sΛ) =
1

1 +
∑Λ

λ=1 exp(−sλωλ)
∀λ = 1, ...,Λ, (2.21)

where s1, ..., sΛ are scaling parameters.

The probability of choosing to search k profiles at session t is obtained as follows:
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1. Draw Q draws of emw, εlike
mw, and εnlike

mw for each m and w combination

2. For each draw eqmw, εlike,q
mw , and εnlike,q

mw , compute

EUBothStagesmw (like) = −clike
m +max

{
E∆LS

hm

[
EUMS

mw (msg|like)|ΩLS
]
,E∆LS

hm

[
EUMS

mw (nmsg|like)|ΩLS
]}

+εlike,qmw

and

EUBothStages
mw (nlike) = max

{
E∆LS

hm

[
EUMS

mw (msg|nlike)|ΩLS
]
, VM(m)

}
+ εnlike,q

mw

Using EUBothStages
mw (like) and EUBothStages

mw (nlike), obtain zqmw:

zqmw =


EUBothStages

mw (like)− VM(m) if EUBothStages
mw (like) ≥ EUBothStages

mw (nlike)

EUBothStages
mw (nlike)− VM(m) otherwise

3. Calculate E[zm] = 1
Q

∑Q
q=1 E[zqmw] where the expectation is taken with respect to all

w’s that m has browsed

Compute the probability of choosing k

1. Draw Q draws of η1,mτ and η2,mτ for each m and τ combination from its distribution

2. For each m and τ , let Γ q
mτ,k = kE[zm]− (φ1 + ηq1,mτ )k − φ2k

2

3. Define the optimality conditions for observed user search behavior

Γ q
mτ,k ≥ max

(
Γ q

mτ,k′

)
∀k′ 6= k
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and calculate the following difference

xqmτk = Γ q
mτ,k −max

(
Γ q

mτ,k′

)
∀k′ 6= k

4. Calculate the smoothed probability using

Prqmτk =
1

1 + exp(−s1 · xqmτk)

where s1 is the tuning parameter

5. Finally, average the choice probability across all Q draws for ηmt

Prmτk =
1

Q

Q∑
q=1

Prqmτk

6. We use a scaling factor of s1 = 5 and take Q = 50 draws.

2.8.3 Identification

Identification of search models is difficult due to the interdependence between search costs

and preferences. Correspondingly, we rely on “exclusion restriction” and the variation in

information sets caused by the experiment to separately identify preference from costs. When

we choose different sets of covariates to enter the utility and the cost function, covariates

that enter the cost function (but not the utility function) serve as exclusion restriction for

identification.

Specifically, we choose the following functional form for clikem

clikem = γlike
1,m + γlike

2,m · LLS
wm (2.22)
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where

LLS
wm =


1− `wm if hm = treated

E[1− `wm|Xm, Xw] if hm = control
(2.23)

LLS
wm represents whether w had ”not `iked” m: for users in the treatment group, LLS

wm equals 1

when `wm = 0 (w did not `ike m) and 0 otherwise; for users in the control group, LLS
wm ∈ [0, 1]

and becomes closer to 1 as the expected value of `wm becomes smaller. The first component

of the messaging cost, γlike
1,m, is the fixed cost of `iking. Although there is no reason to believe

that the act of swiping a phone or clicking a button is costly, we let the data speak for its

magnitude. γlike
2,m is the psychological burden of liking someone who hasn’t indicated interest

to a focal user through `iking him.

In our model, we have assumed that `wm affects users’ expected utility (excluding costs) only

through its impact on match probability (this match probability is estimated directly from

the data), and does not directly enter the utility function. Since `wm (and E[1− `wm|Xm, Xw])

enters clike
m but not the utility function, LLS

wm serves as an exclusion restriction for identification.

One may argue, however, that `wm should enter the utility function, i.e. knowing that

w had `iked m (`mw = 1) may shift m’s utility upwards. In fact, research in psychology

has demonstrated that receiving information that another is attracted to you is a powerful

determinant of attraction, a phenomenon often referred to as the “reciprocity of liking”

(Backman and Secord (1959); Eastwick and Finkel (2009)). However, it is unclear whether

the effect of reciprocity of liking shifts the utility of a match per se. In addition, there is

another stream of research (e.g., unrequited love, Baumeister et al. (1993)) suggesting that

liking is not always reciprocated. For these reasons we choose to not include `wm in our

utility specification. Even if we were to include `wm in our utility specification, since there

is no reason to believe that E[`wm] should enter the utility function, the variation in LLS
wm

created by the experiment allows us to use it as an exclusion restriction.
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We parameterize γlike
1,m and γlike

2,m as

γlike
1,m = γ̃like

1 · exp(z′mλ
like
1 )

1 + exp(z′mλ
like
1 )

and γlike
2,m = γ̃like

2 · exp(z′mλ
like
2 )

1 + exp(z′mλ
like
2 )

(2.24)

where zm are a set of m’s characteristics and γ̃like
1 , γ̃like

2 , λlike
1 and λlike

2 are parameters to be

estimated. The functional form makes the second term in both expressions to be positive

for all values of zm. Therefore, as long as γ̃like
1 > 0, we have γlike

1,m > 0. Similarly, we have

γlike
2,m > 0 as long as γ̃like

2 > 0. For zm, we use m’s attractiveness level.

We assume a similar functional form for the cost of messaging, cmsg
m :

cmsg
m = γmsg

1,m + γmsg
2,m · LMS

wm (2.25)

where

LMS
wm =


1− `wm if hm = treated

1− `wm if hm = control & dwm = like

E[1− `wm|Xm, Xw] otherwise

(2.26)

The interpretation of LMS
wm is similar to LLS

wm - it represents whether w had ”not `iked” m

: for users in the treatment group, as well as users in the control group who have chosen

dwm = like, LMS
wm takes value 1 when `wm = 0 (w did not `ike m) and 0 otherwise; for users in

the control group who have chosen dwm = nlike, LMS
wm ∈ [0, 1] and becomes closer to 1 as the

expected value of `wm becomes smaller. Users’ choice of dwm during the liking stage makes

LMS
wm different from LLS

wm, creating additional variation that helps with identification.

The first component of the messaging cost, γmsg
1,m , is time and effort to compose a message.

The second component of this cost, γmsg
2,m , is the psychological burden of messaging someone
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who hasn’t indicated interest to a user through `iking him. We parameterize γmsg
1,m and γmsg

2,m

as

γmsg
1,m = γ̃msg

1 · exp(z′mλ
msg
1 )

1 + exp(z′mλ
msg
1 )

and γmsg
2,m = γ̃msg

2 · exp(z′mλ
msg
2 )

1 + exp(z′mλ
msg
2 )

(2.27)

where γ̃msg
1 , γ̃msg

2 , λmsg
1 and λmsg

2 are parameters to be estimated.

Finally, the cost of browsing, cbrowsem , is convex in kτ and is given as

cbrowsem (kτ ) = (φ1 + ηmτ ) · kτ + φ2 · k2
τ (2.28)

where ηmτ is a cost shock that is unobserved by the researcher and is independently distributed

across users and sessions as a mean zero normal random variable. φ1 and φ2 are parameters

to be estimated. The parameters of the browsing cost are identified by the number of profiles

that are browsed by each user. Since it is utility-maximizing for all users with browsing costs

in a given range to browse a specific number of profiles, the variation in our data allows us

to identify only a “range” of browsing costs which rationalizes a specific number of browses,

and not the point estimates. The point estimates of the parameters of the browsing cost are

identified by the functional form of the utility function and the distributional assumption of

the unobserved part of the utility and the cost.

2.9 Estimation Results

Table 2.7 reports the maximum likelihood estimates of preference parameters (cost parameters

are presented in Table 2.9). Columns 1 and 2 shows the results for men and women, respectively.

Our estimation results are, generally, consistent with the findings of existing research (Fisman

et al. (2006); Hitsch et al. (2010a); Hitsch et al. (2010b); Kurzban and Weeden (2005)):
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Men place greater emphasis on partners’ physical attributes (measured by age, body type

and attractiveness) than do women. On the other hand, women place more emphasis on

characteristics that reflects partners’ social status and earning potential (which we measure

using education level).

While users of both genders prefer younger partners, men place about four times as much

weight on partners’ younger age than do women. Regarding age difference, women prefer

men who are older than themselves. Unexpectedly, however, male users of MonCherie also

prefer female partners who are older than themselves.

We also find that attractiveness and BMI are important determinants of preference for both

genders. Both men and women prefer more attractive partners. As expected, men place

about four times as much weight on partners’ attractiveness than women do. While both

men and women prefer a partner who is more attractive than themselves, women display

strong aversion towards men who are less attractive than themselves. Regarding BMI, men

display aversion towards women with a large BMI, while women tend to prefer heavier men.

In terms of differences in BMI, men avoid partners who have a larger BMI than themselves,

whereas women do not show this tendency.

With regards education level, men’s preferences over education level are opposite of women’s.

Men shy away from women with higher education level, while women prefer men with more

years of education.61 Negative signs on coefficients of education difference terms suggest that

users prefer partners of similar educational level, but they are not statistically significant.62

61Although some coefficients on categorical education level variables are insignificant, we can see a clear
pattern that men shy away from women with higher education level, while women prefer men with more
years of education. Specifically, our results show that men prefer women with highschool and two-year college
degrees to women with an undergraduate and a postgraduate degree (masters, law, medical school and a
PhD). In contrast, women show strong preference towards men with a postgraduate degree.

62The coefficient on Education Difference (-) for men is positive, but it is not statistically significant. The
coefficient on Education Difference (+) for men is statistically significant, suggesting that men do not like
women who are less educated than them (this is consistent with the results in Hitsch et al. (2010a))
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Both men and women generally have a relative distaste for a partner of a different ethnicity.

However, some coefficients on ethnicity are positive (but most are not statistically significant).

Table 2.9 reports estimates of cost parameters. All cost parameter estimates, except for the

fixed cost of messaging for men (γ̃msg
1 ), are positive and significant, suggesting that these

costs have important implications for user behavior. Our estimates suggest that women have

higher costs of browsing, `iking, and messaging compared to men.
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Preference of men Preference of women
(1) (2)

Estimate SE Estimates SE
Age -2.542*** 0.229 -0.590*** 0.028
Age Difference (+) -2.5352*** 0.061 -1.334*** 0.074
Age Difference (-) 3.253*** 0.052 0.715*** 0.059
HighSchool 2.657*** 0.000 -2.719*** 1.065
TwoYear 2.275*** 0.980 -1.566 1.024
University -0.044 0.623 0.210 0.577
Masters -1.839* 1.033 0.468 0.891
Law -11.740** 5.776 10.564*** 3.473
Med -13.133** 6.679 1.3667 4.431
PhD -7.733 4.826 7.702*** 2.758
Education Difference (+) -2.491*** 0.386 -0.461 0.376
Education Difference (-) 0.671 0.480 -0.561 0.321
Skinny 2.861*** 0.754 1.543*** 0.568
Average 1.657*** 0.664 1.890*** 0.668
Heavier -0.079 1.134 12.505*** 1.417
Overweight -0.357 2.706 -0.328 3.301
BMI Difference (+) 0.045 0.634 0.623*** 0.035
BMI Difference (-) -0.077*** 0.032 -0.029 0.033
Attractiveness 11.904*** 0.146 3.0270*** 0.090
Attractiveness Difference (+) 0.079 0.204 -13.185*** 1.553
Attractiveness Difference (-) 3.637*** 0.219 6.741*** 0.169
Asian; mate Indian 5.992 9.848 -14.584 8.487
Asian; mate white -25.995*** 8.981 -0.850 1.368
Asian; mate black -5.894 32.566 -2.294 3.963
Asian; mate Hispanic -10.476 16.776 -5.187*** 2.406
Asian; mate Native -3.897 9.317 13.736 8.757
Asian; mate Pacific -1e-05 2.601 -15.683 9.239
Asian; mate Mideast -0.746 8.790 6.138 9.274
Asian; mate other -33.073*** 3.216 -6.812*** 1.047
White; mate Asian -11.912*** 2.122 -15.947 10.406
White; mate Indian -4.686 14.370 -5.878 6.918
White; mate black -60.058*** 6.987 -9.549*** 3.354
White; mate Hispanic -4.902*** 2.035 -2.577 2.944
White; mate Native 6.012 4.989 -7.608 5.007
White; mate Pacific -1.423 5.220 -6.952 14.388
White; mate Mideast -2.753 8.542 -11.835*** 4.551
White; mate other -9.462*** 0.827 0.602 0.801

Notes. For estimation, we used all users, but only 25% of the randomly selected sessions.
*Significant at the 10% level; **significant at the 5% level; ***significant at the 1% level.

Table 2.7: Model Estimates
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Preference of men Preference of women
(1) (2)

Estimate SE Estimates SE
Black; mate Asian 2.865 11.137 0.869 8.52
Black; mate Indian 1.882 5.229 9.781 14.624
Black; mate white -7.256 4.601 6.077 3.934
Black; mate Hispanic 12.184 7.931 -4.410 9.110
Black; mate Native -0.560 4.330 0.064 0.436
Black; mate Pacific 1.343 10.568 -0.391 18.653
Black; mate Mideast 1.446 13.826 -2.285 19.551
Black; mate other 0.490 2.278 -1.204 2.333
Hispanic; mate Asian -9.066 15.028 0.937 12.986
Hispanic; mate Indian -3.161 19.708 -0.130 14.709
Hispanic; mate white -27.178*** 3.287 12.155*** 2.4056
Hispanic; mate black -19.299*** 9.533 2.415 12.936
Hispanic; mate Native 1.360 2.499 1.657 13.755
Hispanic; mate Pacific 0.057 6.322 -1.159 8.613
Hispanic; mate Mideast -0.387 1.797 -3.518 6.123
Hispanic; mate other -15.565*** 2.820 3.835*** 1.827
Native; mate Asian 5.312 19.024 -0.300 10.1500
Native; mate Indian 0.302 7.681 -0.836 19.528
Native; mate white 9.197 5.377 15.833*** 4.322
Native; mate black 3.630 15.788 -24.790*** 9.041
Native; mate Hispanic -2.561 22.392 7.615 7.536
Native; mate Pacific -0.116 4.637 − −
Native; mate Mideast 0.638 5.368 -25.913*** 10.983
Native; mate other 1.871 6.821 24.430*** 7.052
Pacific; mate Asian 1.027 3.400 -0.014 10.528
Pacific; mate Indian -0.176 14.473 − −
Pacific; mate white -4.843 19.624 4.260 18.345
Pacific; mate black -0.579 2.102 − −
Pacific; mate Hispanic 4.041 13.910 -4.233 12.899
Pacific; mate Native -0.685 2.552 -0.919 9.757
Pacific; mate Mideast 0.503 3.641 − −
Pacific; mate other -4.821 12.137 -3.052 14.489
Mideast; mate Asian 2.247 5.814 -0.476 8.708
Mideast; mate Indian 0.798 3.699 0.002 1.465
Mideast; mate white 23.906 3.827 -7.353 7.408
Mideast; mate black -4.326 9.967 -0.005 10.931
Mideast; mate Hispanic 1.092 5.861 -3.709 16.842
Mideast; mate Native 1.678 6.747 − −
Mideast; mate Pacific -0.683 3.147 − −
Mideast; mate other -4.416 3.314 -5.447 9.577

Notes. For estimation, we used all users, but only 25% of the randomly selected sessions.
*Significant at the 10% level; **significant at the 5% level; ***significant at the 1% level.

Table 2.8: Model Estimates (Continued)
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Men Women
Estimates SE Estimates SE

Cost of Browsing
φ1 0.223*** 0.012 0.933*** 0.002
φ2 0.036*** 0.006 0.074*** 0.000

Cost of Liking
γ̃like

1 0.718*** 0.028 2.684*** 0.007
γ̃like

2 0.161*** 0.028 0.543*** 0.263
λlike

1 0.183*** 0.005 3.158*** 0.028
λlike

2 0.174*** 0.010 -2.059*** 0.067
Cost of Messaging

γ̃msg
1 0.911 0.620 3.379*** 0.029
γ̃msg

2 1.390*** 0.444 1.100*** 0.042
λmsg

1 2.263*** 0.075 3.241*** 0.050
λmsg

2 23.075*** 0.876 0.340*** 0.055
LL -826181.0244 -304963.5235

Notes. For estimation, we used all users, but only 25% of the randomly selected sessions.
*Significant at the 10% level; **significant at the 5% level; ***significant at the 1% level.

Table 2.9: Cost Estimates

2.10 Predicted Matching Patterns

We want to compare equilibrium matches under different protocols to quantify the relative

impact of frictions and preferences on assortative matching. Specifically, we want to compare

the following sets of equilibrium matches: (i) equilibrium matches in a default setting (when

everyone is in the control group), (ii) equilibrium matches when both sides of the market

(both men and women) are gifted with the treatment, and (iii) equilibrium matches in a

frictionless environment. Note that we are simulating equilibrium matches for cases (i) and

(ii) instead of using the actual matches that are observed in the data. This is because due to

the existence of search costs, a user browses only a limited number of profiles, which make

up his consideration set. Since observed matches in the data are matches achieved selectively

among the profiles within a user’s consideration set, the pool of matched partners is not

identical to the initial pool of available potential partners in the market. To make a correct
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comparison across different protocols, the initial pool of available potential partners must

be identical across different protocols. Therefore, in the following sections we assume that

the pool of men and women attempting to find a partner are all the users who are part

of the experiment (16,119 men and 7,112 women). Because the experiment was conducted

on a randomly selected sample of newly registered users, it is safe to assume that they are

representative of the entire population of users of MonCherie.

We simulate equilibrium matches in a frictionless environment using the Gale-Shapley deferred-

acceptance algorithm. The Gale-Shapley marriage problem assumes the presence of a central

matchmaker which recommends a matching to agents given individuals’ preferences over

potential partners, and hence does not describe the online matching process wherein agents

have to incur costs to find a partner in the absence of a central matchmaker. Adachi (2003)

shows, however, that as search costs become negligible, the set of equilibrium matches

obtained in a two-sided search and matching model is identical to the set of stable equilibrium

matches predicted by the Gale-Shapley algorithm. Moreover, repeated rounds of offer-making

and corresponding rejections of the deferred-acceptance algorithm resemble the search and

messaging behavior of our users. This not only allows us to simulate equilibrium matches

under a frictionless environment, but also provides a theoretical efficiency benchmark that

can be used to evaluate whether frictions in our platform lead to significant departures

from efficiency. Predicted matches under the control and treatment settings are obtained by

introducing frictions to the deferred-acceptance algorithm.63 introduce ad-hoc constraints to

the deferred-acceptance algorithm to account for search frictions.

In what follows, we first explain how we compute predicted matches in a frictionless envi-

ronment using the Gale-Shapley deferred-acceptance algorithm. Then, we describe how we

compute equilibrium matches when users engage in costly search (and costly `iking and
63Banerjee et al. (2013)
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messaging). Predicted matches from these simulations will then be used to answer questions

regarding the relative impact of frictions and preferences.

2.10.1 Empirical Strategy

Before we compute the stable matches using the Gale-Shapley deferred-acceptance algorithm,

we first need to construct ordinal preferences (rankings) over the entire set of women (men)

for each man (woman) using estimated preference parameters from the model. Specifically,

estimated preference parameters from the model are used to construct the predicted utility

that each man would get from matching with each woman in the sample (and vice versa for

women) using the following equation:64

ÛM(m,w) = UM(Xm, Xw; Θ̂M)

Predicted utility ÛM(m,w) is then transformed into an ordinal ranking Rm(w) of user m

with respect to woman w as

Rm(w) = n if


ÛM(m,w′) > ÛM(m,w) > ÛM(m,w′′)

and Rm(w′) = n− 1 and Rm(w′′) = n+ 1

where n is an integer. We apply this methodology to all users in the sample to obtain a full

set of ordinal preferences for each user with respect to all users of the opposite gender.

The man-optimal stable matching using deferred-acceptance algorithm is executed as follows:65

64Note that ordinal preferences are constructed based on the predicted “utility” as opposed to “expected
utility”.

65We obtain predicted utility values for each draw of the parameter, calculate the average utility and the
corresponding average ranking, and run the deferred-acceptance algorithm once. The woman-optimal stable
matching is obtained similarly.
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1. All men first propose to their most highly-ranked woman, as long as ÛM (m,w) ≥ VM (m)

2. Among all the offers that each woman receives, she selects the most highly-ranked man,

as long as ÛW (w,m) ≥ VW (w)

3. All men who haven’t been selected then propose to their second most-highly ranked

woman

4. If a woman receives a new offer that is higher-ranked than the one she is currently

holding, the woman releases the old offer and keeps the new offer. Released man then

has to propose to the next woman in his ranking list

5. This process continues until all men go through all women such that ÛM (m,w) ≥ VM (m)

Ties are broken randomly. The above process describes how we obtain a set of stable matches

implied by the estimated preferences when frictions are negligible.

We next describe how we incorporate frictions to this algorithm when: (i) everyone is in

the control group, and (ii) users on both sides (both men and women) are gifted with the

treatment. Note that ordinal preferences of users in the presence of frictions are constructed

using the “expected” utility that each user will get with each potential partner. Since a

match probability depends on the value of `wm, the expected utility will also depend on

`wm. However, we do not observe the value of `wm because users in our experiment did not

interacted with each other (except a few who did). We solve this problem by simulating the

values of `wm. That is, we simulate the `ikes that a user receives from the opposite gender

before he engages in search, for each pair of m and w. Specifically, the simulation of `wm and

matching in an environment with frictions is executed as follows:

1. Construct `wm for each pair of users (w,m) as follows:
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(a) Draw random utility terms, ewm, for each pair of w and m66 who assume that the

noise in the utility function comes from a measurement error, we follow Hitsch et

al. (2010a) who assume that the error term is a “structural noise”. This is because

several important dimensions of the profile (such as picture or income) that affect

choice and are observed to users are unobserved by the econometrician, whereas

researchers in Banerjee et al. (2013) observe everything that is observed by the

agent.

(b) For each w, using the draw and estimated preference parameters, construct

E∆LS
hw

[
ÊU

MS

wm(msg|like)|ΩLS
]
, E∆LS

hw

[
ÊU

MS

wm(nmsg|like)|ΩLS
]
, E∆LS

hw

[
ÊU

MS

wm(msg|nlike)|ΩLS
]

and VW (w)

(c) w decides to `ike m if the expected utility from `iking is greater than its cost:

`wm =



1 if max

{
E∆LS

hw

[
ÊU

MS

wm(msg|like)|ΩLS
]
,E∆LS

hw

[
ÊU

MS

wm(nmsg|like)|ΩLS
]}

−max

{
E∆LS

hw

[
ÊU

MS

wm(msg|nlike)|ΩLS
]
, VW (w)

}
+ εlikewm − εnilke

wm > clikew

0 otherwise

2. Taking `wm constructed in the previous step as given, construct a consideration set for

each m

(a) Draw random utility term, emw, for each pair of m and w.

(b) Create a grid k = 0, 1, 2, ..., kmax for each m67

(c) For each m

i. Sort profiles by zmw in a descending order, and calculate E[zmw] for profiles that

haven’t been browsed yet
66As opposed to Banerjee et al. (2013)
67The marjority of users browsed less than 100 profiles during each session. Hence we set kmax = 100.
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ii. Draw cost shock ηmτ , and for each k in the grid calculate Γmτ,k = k · E[zmw]−

(φ1 + ηq1,mτ ) · k − (φ2) · k2

iii. The optimal kmτ = k∗ is such that Γ q
mτ,k∗ ≥ max

(
Γ q
mτ,k

)
∀k 6= k∗

iv. Repeat steps ii−iv until k∗ = 0 or until m goes through all the profiles

v. Calculate Km =
∑
kmτ which is the entire consideration set that m will search

across all sessions

3. Create ordinal preferences for each user for all users of opposite gender

(a) For each pair m and w, m first chooses dmw ∈ {like,nlike}. m chooses dmw = like

iff

max

{
E∆LS

hm

[
ÊU

MS

mw (msg|`ike)|ΩLS
]
,E∆LS

hm

[
ÊU

MS

mw (nmsg|like)|ΩLS
]}

−max

{
E∆LS

hm

[
ÊU

MS

mw (msg|nlike)|ΩLS
]
, VM(m)

}
+ εlike

mw − εnlike
mw > clikem

(b) Conditional on dmw, m then chooses µmw ∈ {msg,nmsg}. m chooses µmw = msg

iff

ÊU
MS

mw (msg|dmw) ≥ ÊU
MS

mw (nmsg|dmw)

(c) For each m, compute the predicted expected utility ˆEUmw

ˆEUmw = UM(m,w) · π̃MS
mw (dmw, µmw) + VM(m) · [1− π̃MS

mw (dmw, µmw)]

− clike
m 1{dmw = like} − cmsg

m 1{µmw = msg}

(d) Transform ˆEUmw into ordinal ranking Rm(w) such that

Rm(w) = n if


ˆEUmw′ >

ˆEUmw > ˆEUmw′′

and Rm(w′) = n− 1 and Rm(w′′) = n+ 1
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where n is an integer

4. Compute equilibrium matches:

(a) Define Cm as the set of all profiles that m either `iked or messaged and let

Im = Cm ∩Km

(b) All men first propose (either message or `ike) to their most highly-ranked woman

within the set Im

(c) Women considers all offers they receive. If a woman received a message from

a man, the net utility from selecting this man is UW (w,m) − VW (w). On the

other hand, if a woman only receives a `ike from a man but did not receive a

message, the net utility from selecting this man is UW (w,m)− cmsgw −VW (w). This

is because if a woman only receives a `ike, she must initiate a conversation to a

man, which is costly. Woman selects a man that gives highest net utility as long

as it is greater than zero.

(d) All men who haven’t been chosen by women then propose to the next best woman

within the set Im

(e) If a woman receives a new offer that is preferable to the one she is currently

holding, she releases the previous offer. The released man then has to propose to

the next woman on his list within his set Im

(f) This continues until each man m exhausts the list of women in his set Im

Ties are broken randomly.68
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Man-optimal

control treated Gale-Shapley Fisher’s z
(1) (2) (3) (4)

Age 0.5986 0.5541 0.5146 -5.585
(0.0178) (0.0146) (0.0146)
[3,079] [3,359] [6,554]

Education 0.2521 0.2094 0.1444 -2.143
(0.0376) (0.0397) (0.0382)
[533] [555] 1,173

Attractiveness 0.7789 0.7920 0.5418 -30.057
(0.0079) (0.0075) (0.0098)
[2,917] [3,028] [6,336]

BMI -0.1430 -0.1277 -0.0701 0.525
(0.0913) (0.0724) (0.0821)
[103] [88] [106]

Ethnicity 0.3947 0.4141 0.4419 2.2962
(0.4891) (0.4929) (0.4967)
[793] [838] [2,159]

Notes. Pearson correlation coefficient. Bootstrap standard errors in parentheses. Number of observations
in brackets. If the difference between the treatment and control group is significant (at the 5 percent
level), Fisher’s z-statistics are in bold.

Table 2.10: Attribute Correlations in Predicted Matches

2.10.2 Predicted Matching Patterns

Table 2.10 shows attribute correlation patterns between couples for predicted male-optimal

matches. Columns (1), (2) and (3) show correlations in user attributes for matches under the

control, treatment and frictionless (Gale-Shapley) settings, respectively. Column (4) reports

Fisher’s z-statistic that tests the difference in correlations between the control (Column 1) and

frictionless (Column 3) protocols. Number of matches increase as we gradually reduce frictions,

from control (3,079) to treated (3,359), and from treated to frictionless (6,554) setting. Some

users who got matched under one protocol did not a get a match under an alternative protocol
68We obtain predicted utility values for each draw of the parameter, calculate the average utility and the

corresponding average ranking, and run the deferred-acceptance algorithm once.
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(and vice versa). As expected, frictions play a significant role in assortative matching. The

magnitude of predicted age correlation (ρ = 0.60 under control setting) is roughly similar to

the actual correlation in the data (ρ = 0.71). Age correlation under the treatment (ρ = 0.55)

is approximately 7 percent less than that of the control (ρ = 0.60). Completely removing

frictions further reduces age correlation (ρ = 0.51) to approximately 14 percent less compared

to the control setting, and this difference is statistically significant. The magnitude of the

predicted correlation in education (ρ = 0.25 under control setting) is greater than the actual

education level correlation in the data (ρ = 0.12). The correlation in education level under

the treatment (ρ = 0.21) and frictionless (0.15) protocols are both lower than that of the

control (ρ = 0.25). Education correlation level under the frictionless setting is approximately

42 percent lower compared to the control setting. Our model overpredicts the correlation in

attractiveness level. Nevertheless we see a consistent pattern: completely removing frictions

reduces attractiveness correlation (ρ = 0.54) by approximately 30 percent compared to that of

the control setting (ρ = 0.78), and this difference is statistically significant. Our model does

not perform well in predicting correlation patterns in BMI, and predicts negative correlations

in BMI (however, the correlations are not statistically significant). Since we are not able

to calculate correlation coefficients for ethnicity due to its categorical nature, we compare

the mean of a binary variable that equals 0 if matched couples are of same ethnicity and 1

otherwise. The mean of this binary variable represents the proportion of users who matched

with a partner of identical ethnicity. Approximately 44 percent of the users got matched

with a partner of different ethnicity under the frictionless protocol, which is roughly 13

percent more than that of the control protocol (39 percent), and this difference is statistically

significant.

Unlike certain attributes for which preferences may be horizontal, it is almost universally

agreed that preference for attractiveness is vertical, i.e. everyone ranks attractiveness using
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the same criterion. Under vertical preferences, theoretically, reduction of friction to lead to

more sorting. This is because, in the absence of frictions, the most attractive man would

match with the most attractive woman who is willing to accept him and vice versa. However,

this may not hold in our case since different number of matches arise under different protocols

in our simulations, and some individuals get matches in one but not in other protocols. To

see whether reducing friction allows users to match with more attractive (vertically preferred)

partners, we sum the attractiveness of a man and a woman and compare the average sum of

attractiveness across protocols. We find that the average sum of attractiveness under the

control setting is 13.36 (sd:5.29), 12.73 (sd: 5.29) under the treatment setting, and 13.75

(sd: 4.0) under the frictionless setting. It is unclear why the average attractiveness of a

partner declined from the control to treatment condition, but we do find that the average

attractiveness of a partner has increased from the control to frictionless setting, and this

improvement is statistically significant.

We also use the absolute value of attribute difference (∆ = |Xm − Xw|) as an alternative

measure of sorting and find similar patterns. Table 2.11 reports the results. Columns (1), (2)

and (3) display the means of attribute differences between matched couples, under alternative

protocols: control, treatment and frictionless protocols, respectively. Column (4) reports the

t-statistic that tests the significance of differences in correlations between the control (Column

1) and the frictionless (Column 3) protocols. Consistent with our previous results, frictions

play a significant role in assortative matching. The magnitude of our predicted age difference

(∆ = 4.30 under control setting) is approximately similar to the actual age difference in the

data. Age difference under the treatment (∆ = 4.8) is approximately 12 percent greater

than under the control (∆ = 4.30) setting. Age difference under the frictionless setting

(∆ = 6.46) is approximately 50 percent greater than under the control setting, and this

difference is statistically significant. Differences in years of education under the frictionless

108



www.manaraa.com

Mean Attribute Difference

control treated Gale-Shapley t-stat
(1) (2) (3) (4)

Age 4.2959 4.7681 6.4599 15.453
(3.7529) (3.6124) (7.3655)
[3,079] [3,359] [6,554]

Education 1.2420 1.1928 0.9327 -4.1699
(1.4180) (1.4360) (1.4213)
[533] [555] 1,173

Attractiveness 1.1628 1.1853 2.7112 33.080
(1.5008) (1.4188) (2.3137)
[2,917] [3,028] [6,336]

BMI 4.1748 4.375 3.2453 -1.648
(4.2781) (4.0693) (3.8688)
[103] [88] [106]

Notes. Pearson correlation coefficient. Standard deviation in parentheses. Number of observations in
brackets. If the difference between the treatment and control group is significant (at the 5 percent level),
the t-statistics are in bold.

Table 2.11: Attribute Differences in Predicted Matches

setting (∆ = 0.93) is approximately 25 percent lower than under the control (∆ = 1.24)

setting. Attractiveness difference under the treatment (∆ = 1.19) is approximately 2.6 percent

greater compared to the control (∆ = 1.16) setting. Completely removing frictions further

increases this difference (∆ = 2.71), to approximately 130 percent greater than that under

the control setting, and this difference is statistically significant.

2.11 Welfare Analysis

2.11.1 Rank Differences of Matched Outcomes

To study whether reducing frictions makes users better off, we want to see whether reducing

frictions results in matches with more preferred partners. Closely following Hitsch et al.
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Mean SD t-stat Nobs
Panel A: Total
∆Rtr−ct -0.7962 14.3811 -8.439 23,235
∆RGS−tr -6.1846 18.5691 -50.769 23,235
∆RGS−ct -6.9808 17.9721 -59.208 23,235
Panel B: Match in either protocol
∆Rtr−ct -2.0905 23.2459 -8.460 8,849
∆RGS−tr -9.8182 22.6215 -52.508 14,636
∆RGS−ct -11.3228 21.7886 -62.197 14,325

Notes. The table shows summary statistics on the predicted rank differences across alternative protocols.

Table 2.12: Rank Differences

(2010b), we implement this as follows: For each user, we assign the ordinal ranking to all

potential partners based on the predicted utility. The most desirable partner will be ranked

1st, the second desirable partner will be ranked 2nd, and so forth. For each user i ∈ {m,w}, let

Rct
i be the rank of i’s matched partner predicted under the control setting, Rtr

i be the rank of

i’s matched partner predicted under the treatment setting, and RGS
i be the rank of i’s matched

partner predicted under the frictionless setting. For users who did not get a match, we assign

the ranking of his/her reservation value VI(i). Denote ∆Rtr−ct
i = 100× (Rtr

i −Rct
i )/NJ as the

difference between the ranks achieved under the treatment and control protocol, expressed

in terms of percent (of number of users in the opposite gender), where NJ is the number

of potential partners. Likewise, let ∆RGS−ct
i = 100 × (RGS

i − Rct
i )/NJ be the difference in

ranks achieved under frictionless and control protocols, expressed in terms of percent (of

number of users in the opposite gender). In table 2.12 Panel A, we report means, standard

deviations, and t-statistics of predicted average rank differences across protocols. The mean

is computed as ∆R̄tr−ct = (NI + NJ)−1 ×
(∑NI

i=1 ∆Rtr−ct
i +

∑NJ
j=1 ∆Rtr−ct

j

)
. If ∆R̄tr−ct is

negative, the treatment could have improved, on average, on the allocation achieved under

control protocol. Likewise, let ∆R̄GS−ct = (NI +NJ)−1 ×
(∑NI

i=1 ∆RGS−ct
i +

∑NJ
j=1 ∆RGS−ct

j

)
be the average difference in ranks achieved under frictionless and control protocols. If
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∆R̄GS−ct is negative, frictionless setting could have improved, on average, on the allocation

achieved under control protocol. Similar interpretation can be applied to ∆R̄GS−tr =

(NI + NJ)−1 ×
(∑NI

i=1 ∆RGS−tr
i +

∑NJ
j=1 ∆RGS−tr

j

)
. We find that the treatment improves

average ranks achieved by approximately 0.8 percent relative to control setting. Although

the magnitude of this improvement is small, we find that it is statistically significant. The

Gale-Shapley protocol further improves average ranks by approximately 7 percent relative to

control setting. These numbers suggest that removing frictions improves on the outcomes (in

terms of rankings) achieved under control setting.

A large number of users did not get a match in any of the alternative protocols, which results

in a ranking difference of zero. A large number of users with zero ranking difference masks

the average rank difference. Therefore, in table 2.12 Panel B, we report the statistics for

users who got a match in at least one of the protocols under comparison. For example,

∆Rtr−ct computes the difference in ranks achieved under the frictionless and control protocols

(expressed in terms of percent) for only those users who got a match in either treatment,

control, or both protocols. Consistent with our previous findings, we find that the treatment

improves average ranks achieved by approximately 2 percent relative to the control setting,

and the Gale-Shapley protocol further improves average ranks by approximately 11 percent

relative to the control setting.

The results presented in Table 2.12 consider both, users who got a match and users who

did not get a match. Since the removal of the friction results in more number of successful

matches, the efficiency gain from the removal of frictions may be a mere outcome of more

number of matches.69 To explore this issue further, we also compare the average achieved

ranking (expressed in terms of percent as before) only for users who did get a match. The
69If a match is achieved, it means that the utility from this match is greater than the expected value of

remaining single.
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average ranking under the control setting is 0.343 (sd: 0.259, N=6,158) and 0.229 (sd: 0.204,

N=13,106) under the Gale-Shapley protocol, which is a significant improvement from that of

the control protocol by 33 percent. This suggests that the improvement in efficiency presented

in Table 2.12 is not solely driven by increase in number of matches.

2.12 Conclusion

This paper investigates the impact of search frictions on the formation of a match in two-

sided markets. With agents on both sides having private preferences regarding each others’

chracteristics, finding a match based on mutual agreement requires extensive costly search.

Using data from an online dating platform, we estimate a model of costly search that

incorporates preference heterogeneity across users. Our estimation results reveal that frictions

play a significant role in shaping matching outcomes. Our predicted matches suggest that

matches achieved in a frictionless environment display significantly lower attribute correlations

between couples across various dimensions (age, education level, ethnicity, attractiveness),

compared to matches achieved in a market with frictions. We also find that removing frictions

lead to significant gains in terms of partner rankings.

Our findings can provide important managerial implications for the pricing of premium

features, in how much users are willing to pay for an additional piece of information about

the preferences of the other side. In addition, our findings can shed light on what type of

information should be displayed on users’ profile. Information that is helpful in gauging

the preferences of other users can greatly improve consumer experience. Furthermore, with

one-third of the marriages in the U.S. happening online, our paper shows how the design of

an online platform can contribute to diversity, which can in turn alleviate persistent social

inequality.
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Chapter 3

Using Machine Learning to Address

Customer Privacy Concerns: An

Application with Click-stream Data

3.1 Introduction

As consumers constantly generate massive amounts of data, unprecedented opportunities

exist for firms to harness the power of individual-level consumer data to predict their behavior

and to target and customize service to consumers. The rapid growth of the use of consumer

data, however, has also increased debate surrounding the protection of consumers’ privacy.

The Privacy Rights Clearinghouse reports that 8,909 data-breach incidents have been made

public since 2005, compromising billions of sensitive personal records.70 The scope and the

extent of data breaches are alarming. For instance, millions of users were affected by the 2017
70Source: https://www.privacyrights.org/data-breaches, accessed on December 1, 2018.
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Equifax data-breach incident that exposed sensitive personal information such as driver’s

license numbers, credit history, and even social security numbers.71

Consumers have expressed serious concerns pertaining to how firms handle consumers’ data

and protect their privacy. According to an online survey conducted by IBM in 2018, 78% of

U.S. consumers said that a company’s ability to keep consumer data private is “extremely

important,” and only 20% responded that they “completely trust” the companies they interact

with to keep their private data safe.72 Another survey by Consumer Reports finds that in

the aftermath of Facebook’s Cambridge Analytica scandal in 2018, in which the British

consulting company deceitfully acquired and used millions of Facebook users’ data, 70%

of Facebook users have changed their behavior, taking more precautions with their posts,

revising privacy settings, and turning off location tracking.73 These examples show that with

growing concerns over privacy issues, consumers have become skeptical of firms’ promises

about the use and protection of consumers’ personal data. As a result, firms are now facing a

crisis of trust and confidence from their consumers.

Governments are also concerned with the adequacy of data security and protection of

consumer privacy implemented by companies. Accordingly, governments in many countries

are considering regulations that greatly restrict firms’ access, use, and sharing of consumer

data. One noteworthy privacy legislation is the European Union’s General Data Protection

Regulation (GDPR). With the goal of creating more consistent protection of consumer

personal data across all EU nations, the GDPR went into effect on May 25, 2018, as the
71Source: https://arstechnica.com/information-technology/2018/05/equifax-breach-exposed-

millions-of-drivers-licenses-phone-numbers-emails/, accessed on December 1, 2018.
72Source: http://analytics-magazine.org/survey-finds-deep-consumer-anxiety-over-data-

privacy-and-security/, accessed on November 25, 2018.
73Source: https://www.cmswire.com/information-management/how-facebooks-cambridge-

analytica-scandal-impacted-the-intersection-of-privacy-and-regulation/, accessed on Novem-
ber 21, 2018.
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primary law regulating how companies protect EU citizen’s personal data.74 Under GDPR,

organizations must obtain explicit consent from users in order to store users’ personal data,

and also have a legal obligation to inform users of the purpose of data collection and processing,

as well as of the identities of third parties with whom the data will be shared.75 Companies

that fail to comply with the GDPR are subject to costly penalties of up to €20m, or 4% of a

firm’s global turnover of the previous year (whichever is greater). Furthermore, note that

in addition to EU members, any company, regardless of its location, must comply with the

regulation if it markets goods and services to EU residents (known as “extra-territoriality”).

The impact of the GDPR thus exceeds the boundaries of EU and changes data-protection

requirements globally.

The GDPR is just the beginning - recent high-profile data breaches have further triggered calls

for more urgent and strict data-protection measures worldwide. For example, modeled after

the GDPR, the California Consumer Privacy Act of 2018 (CCPA) was recently passed (June

2018) and will become effective in 2020. Much like the GDPR, the CCPA provides consumers

more control over their personal information by requiring California-based organizations to

obtain explicit consent from users before sharing or selling consumer data to third parties.

India is also one step closer to having its own data-protection law. In July 2018, the Indian

government published the draft of the Personal Data Protection Bill, which proposes a

comprehensive data-protection framework and is similar to the GDPR in terms of extra-

territoriality and global-turnover-based penalties.
74According to GDPR directive, “personal data” are defined as “any information relating to an identifiable

person who can be directly or indirectly identified by reference to an identifier. This definition provides for a
wide range of personal identifiers to constitute personal data, including name, identification number, location
data or online identifier, reflecting changes in technology and the way organizations collect information about
people.”

75Source: https://eugdpr.org/the-regulation/gdpr-faqs/, accessed on November 21, 2018.
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While offering more rights and protection to consumers, such strict regulations will inevitably

limit firms’ ability to tailor their marketing activities and services to each individual consumer.

Not only will these regulations negatively affect the profitability of firms that rely heavily

on individual consumer data for prediction and targeting, but their impact on consumer

welfare is also ambiguous. Note that firms’ targeting activities often provide additional value

to consumers, for instance, through lower search costs or through a better match with a

product (e.g., Yao and Mela (2011), Anderson and Simester (2013)). Consequently, it is

unclear whether consumers will eventually be better off if firms stop exploring consumer

data under these new privacy policies. Therefore, it is imperative to find solutions that can

alleviate the potential negative side effects of restrictive privacy regulations, while preserving

data security.

In this paper, we show how machine learning approaches can achieve such objectives by

enabling firms to continue benefiting from the abundance of consumer data without the

need to store or access the data, hence mitigating the privacy concerns. In particular, we

demonstrate how firms may achieve accurate targeting without centralized storage or access

to the data, by building a Gated Recurrent Unit (Cho et al. (2014)) recurrent neural network

(RNN) under the Federated Learning algorithm (McMahan et al. (2017)). The Gated

Recurrent Unit (GRU, henceforth) recurrent neural network algorithm can achieve a highly

accurate prediction about a consumer’s next action conditional on what she has done or

experienced in the past (e.g., a firm can predict which movie a consumer is more likely to

watch based on her watch history and which movies are recommended to her). The Federated

Learning (FL, henceforth) algorithm stores the private data locally on each user’s device,

while the model parameters are also updated locally on that device using those data. During

the training, the firm does not need to access the private data directly, thereby keeping them

safe. Only those locally updated parameters from consumers’ devices are communicated to
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the central server (firm). Upon receiving those updated parameters from consumers, the firm

aggregates them to update a “shared” model.76

The FL approach has a distinct advantage over other methods devised to protect privacy.

Even if mostly anonymized, datasets that are stored and accessible at the firm’s data center

can still put consumer privacy at risk (Sweeney (2000)). For instance, consider the Differential

Privacy algorithm (Dwork et al. (2006)) that Apple has deployed since 2016 as a key feature

to protect consumer identity. When Apple collects and stores user data, it adds statistical

noise to a user’s profile and activities to mask the user’s identity. A study by Tang et

al. (2017) finds, however, that Apple’s privacy-breach risk still exceeds the level that the

research community typically considers acceptable. By contrast, the FL trains the model

on each consumer’s device locally, and therefore greatly reduces such risks because the firm

never transfers, accesses, or stores consumers’ personal data. The only information that

is transmitted between the firm and consumers is the locally updated parameters that are

necessary to improve the shared model.

Another attractive property of FL, which also distinguishes it from other distributed learning

algorithms, is that it is robust to non-IID and highly unbalanced datasets. The data stored

on any given consumer’s device are almost certainly not representative of the population

distribution, and the amount of data stored will vary substantially based on the consumer’s

usage of the device and the firm’s service. While much of the previous research on distributed

learning does not consider unbalanced and non-IID datasets, the FL approach works relatively

well on these types of data by repeatedly averaging locally updated parameters.
76In the machine learning literature, “parameters” and “weights” are often used interchangeably. We use

“parameters” to distinguish our meaning from “weights” used in weighted-averaging calculations, which appear
later in the paper.
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Furthermore, the FL is communication efficient. One major constraint in the design of

large-scale distributed learning algorithms is the communication cost. In a typical distributed

learning setting where the data are stored in a decentralized manner over a cluster of devices

(nodes), communication costs are considerable. The development of an efficient distributed

learning algorithm that can minimize the number of communication iterations among nodes

is therefore an important issue. In the FL setting, the network and power connection of a

consumer’s device make communication costs the principal constraint. McMahan et al. (2017)

demonstrate how two components of the FL approach can substantially reduce the number of

communication rounds necessary for achieving a target accuracy level. The two components

are (1) increasing parallelism, so that more consumers do computation independently during

each communication round, and (2) increasing computation on each consumer’s device, so

that multiple updates are performed at the consumer level during each communication round.

To demonstrate the applicability of the proposed approach in a general marketing setting,

we train the GRU with the FL algorithm using a highly unbalanced and non-IID consumer

browsing dataset at an online retailer, with the objective to predict a consumer’s click-stream.

To establish a benchmark, we also train the GRU using a standard centralized learning

approach. In contrast to the FL algorithm, the centralized learning requires the firm to store,

access, and train all consumers’ data collectively at a data center. We show the prediction

accuracy of the proposed approach is comparable to that of the centralized learning method.

Consequently, this approach allows firms to target consumers with high accuracy without

compromising the security of personal data.

The rest of this paper is structured as follows: In the following section, we briefly discuss

related literature. Section 3.3 gives a brief overview of the FL algorithm, as well as the

GRU. In Section 3.4, we apply the FL algorithm with the GRU to a practical marketing
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problem, training a model to predict each consumer’s next-clicked item using an online

retailer’s click-stream data. Section 3.5 concludes.

3.2 Related Literature

This paper adds to a stream of literature on consumer privacy.Han et al. (2003) study

the trade-off that consumers face between the benefits and costs of providing personal

information. They find the benefits such as monetary rewards and future convenience

significantly affect consumers’ preferences over websites with various privacy policies. They

also quantify individuals’ valuation of protection of personal information, and find it is worth

between $30.49 and $44.62. Tucker (2014) shows that increasing users’ perception of more

control over their private information increases the effectiveness of behavioral targeting.

Leveraging the implementation of European Union’s opt-in tracking policy as a natural

experiment, Goldfarb and Tucker (2011) demonstrate that display advertising becomes far

less effective (65% reduction in effectiveness on average) in terms of stated purchase intent as

a result of the privacy regulation. In the context of the online display ad industry, Johnson

(2013) finds that reduced targeting due to stricter privacy policies decreases advertiser

surplus, and that publishers’ revenues also decrease as a result. More recently, Rafieian and

Yoganarasimhan (2018) use machine learning techniques to quantify the value of targeting

information, specifically, the relative importance of contextual information (based on the

content of the website and hence privacy preserving) versus behavioral information (based on

user-tracking and thereby jeopardizing privacy). They find that targeting consumers based

on behavioral information is more effective than targeting based on contextual information,

and that strict privacy regulations that ban user-tracking substantially reduce the value

of behavioral targeting. For a more comprehensive review and discussion on big data and

consumer privacy, see Jin (2018).
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This paper also relates to literature on privacy-preserving machine learning (Barni et al.

(2011), Xie et al. (2014), Rubinstein et al. (2012), Sarwate and Chaudhuri (2013), Duchi

et al. (2012), Mohassel and Zhang (2017)). Privacy-preserving deep learning has been an

active research area in recent years. The most relevant study in this domain is Shokri and

Shmatikov (2015), who propose a method based on Differential Privacy (DP) for collaborative

deep learning, where each party asynchronously trains a neural network locally and selectively

shares only a subset of parameters with other parties. They do not, however, take into

account the non-IID and unbalanced properties of the data. McMahan et al (2017) advance

this literature by developing the FL algorithm that is robust to unbalanced and non-IID data

distributions that are the defining characteristics of data stored in each consumer’s device.

This distributed learning technique offers the firm as well as consumers the benefits of the

shared model trained from rich data, without having to compromise the security of personal

data. In our paper, we further combine the FL approach with the GRU approach. We use

the model to predict consumer click-streams and demonstrate its accuracy and applicability

in marketing.

This paper also belongs to the literature that explores path-tracking and click-stream data to

study consumers’ decision-making along the purchase funnel (e.g., Moe and Fadder (2004),

Montgomery et al. (2004), Park and Fader (2004), Hui et al. (2009)). Unlike typical brick-

and-mortar data, which only record consumers’ final transactional events, path-tracking and

click-stream data can accurately capture the entire shopping path of a consumer in a complete

and timely manner. As shown in recent studies, insights obtained from such data can provide

a better understanding of consumers’ search behavior and market competition, as well as

enable managers to optimize their marketing efforts (e.g., Bronnenberg et al. (2016), Chen

and Yao (2017), Seiler and Yao (2017), Yao et al. (2017)). Tracking and storing path and

click-stream information, however, also intensifies privacy concerns. Even after the data are
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anonymized, the empirical patterns embedded in the data can reveal a substantial amount of

personal information (Valentino-DeVries et al (2018)). Our paper demonstrates the possibility

of analyzing path-tracking and click-stream data without jeopardizing consumers’ privacy.

3.3 Model

In this section, we provide a brief description of the FL as well as the GRU algorithms. We

first describe the FL’s process of model distribution and aggregation executed by the central

server, and then proceed to describe the GRU algorithm that trains the model locally at each

individual consumer’s device using personal data.

3.3.1 Server

The data are partitioned over K consumers, with nk number of observations for consumer k,

k = 1, ..., K. Let Pk = {1, ..., i, ..., nk} be the set of indices for consumer k’s data points; that

is, nk = |Pk |. At round τ of communication between consumer devices and the central server, a

fraction C ∈ (0, 1] of all consumers are randomly selected to form a set Sτ (i.e., only a fraction

C of consumers are selected during each communication round for computational efficiency).

The model parameters of the current round, Θτ , are distributed from the central server to

all consumers who have been selected to be included in this set. Next, each consumer k’s

device computes the average gradient gk on her local data at the current parameters Θτ . The

average gradient gk can be written as gk(Θτ ) = ∇Lk(Θτ ), where Lk(Θτ ) = 1
nk

∑
i∈Pk li(Θτ ),

and li(Θτ ) is the loss function of the prediction on observation i.

The parameters are locally updated as

Θk
τ+1 ← Θτ − ηgk, (3.1)
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where η is a learning rate. In other words, in parallel, each consumer locally takes one step

of gradient descent at the current parameters using her local data. The resulting parameters,

Θk
τ+1, ∀k ∈ Sτ , are sent to the central server. The central server then takes a weighted

average of parameters received from the consumers and updates the shared central model

Θτ+1 ←
∑

k∈Sτ
nk
nSτ

Θk
τ+1, where nSτ is the total number of observations across all consumers

in Sτ . This process repeats until convergence.

Sometimes, increasing local training epochs may further improve the communication efficiency

(i.e., reduce the number of communication rounds necessary for convergence).77 Specifically,

during round τ of communication, instead of updating the local parameters only once at each

consumer’s device, it is possible to modify the procedure by increasing the number of local

training epochs to E > 1 times before communicating to the central server. Let e be the

index of local training epochs. Then consumer k’s parameters at round τ are updated as

Θk,e+1
τ+1 ← Θk,e

τ+1 − ηgk(Θ
k,e
τ+1)

e = 1, 2, ..., E

with Θk,1
τ+1 = Θτ and Θk

τ+1 = Θk,E+1
τ+1 .

The improvement in communication efficiency through this additional step, however, is not

guaranteed. The improvement in efficiency may depend on characteristics of data that are

stored on each consumer’s device (e.g., sparsity). As we show in our application in Section

3.4 (as well as shown in McMahan et al (2017)), the additional local training epochs may

not necessarily enhance the speed of neural network convergence. Accordingly, in practice,
77In the machine learning literature, an “epoch” is defined as one round of passing all data forward and

backward through the network. Because the training happens on each individual consumer’s device and all
her data are passed through the local neural network, each training iteration can be viewed as one local
epoch.
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firms need to fine-tune the number of local epochs to achieve a high level of communication

efficiency.

3.3.2 Consumer k

At each consumer’s node, we employ the GRU to predict each consumer’s next-clicked item

during a browsing session. The GRU solves the vanishing gradient problem of the vanilla

RNN using an “update gate” vector and a “reset gate” vector. These two gates determine

how much information from a consumer’s previous clicks needs to be passed along to make

predictions about future clicks. They can be trained to retain information from multiple

steps back or to ignore the information that is irrelevant for the prediction. For notational

simplicity, we omit the indices k and τ that index a specific consumer and a communication

round, respectively.

During a specific browsing session, a consumer makes T ≥ 2 clicks. Suppose J alternative

products are available at each session. At step t (t = 1, 2, ..., T ) of the browsing session, the

consumer can choose one product to click. Let matrix X = [x1, x2, ..., xT ] be the sequence of

vectors representing the consumer’s click-stream in a given browsing session. xt ∈ RJ×1 is a

J-dimensional vector whose j-th element equals 1 if a consumer clicks on product j at step t,

and 0 otherwise.

Given the sequence [x1,x2..., xt] up to step t, t = 1, 2, ..., T − 1, our objective is to predict

xt+1, the click vector at step t + 1. At each t, t = 1, 2, ..., T − 1, the hidden state of the

previous step, ht−1 ∈ RD×1,78 and the input xt are passed to the gated recurrent unit.79 The

gated recurrent unit in turn updates the current hidden state ht (t = 1, 2, ..., T − 1) using the
78D × 1 is the dimension of the hidden state vector.
79Note h0 is a vector with all elements equal 0.
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following architecture

zt = σ([Wzxt + Uzht−1 + bz) (3.2)

rt = σ(Wrxt + Urht−1 + br) (3.3)

ĥt = tanh(Whxt + Uh(ht−1 � rt) + bh) (3.4)

ht = zt � ht−1 + (1− zt)� ĥt, (3.5)

where zt and rt are update and reset gates, respectively; ĥt and ht are the current memory

and the hidden state, respectively; σ(·) is the sigmoid function; tanh(·) is a hyperbolic

tangent function; and � denotes an element-wise multiplication. Wz,Wr,Wh, Uz, Ur, Uh are

the matrices, and bz, br, bh are the vectors of parameters to be learned. The intuition of the

GRU is as follows:

Update gate (equation 3.2): The update gate zt allows the model to control how much

of the information from previous steps (which is summarized in ht−1) should be carried

forward to the current hidden state ht. The update gate helps the model remember long-term

information.

Reset gate (equation 3.3): Despite their identical formula, the reset gate rt is different

from the update gate zt. The difference comes from the parameter matrices and vectors, and

more importantly, the gate’s usage. The reset gate rt allows the model to drop any previous

information that is irrelevant for future predictions.

Current memory (equation 3.4): The current memory ĥt consolidates the new input xt

(the click vector in step t) with the previous hidden state ht−1. The latter holds information

from the consumer’s click activities in previous t− 1 steps.
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Hidden state (equation 3.5): The hidden state ht uses the update gate as the weight to

store relevant information from the previous hidden state ht−1 and the current memory ĥt .

The hidden state ht is then used to calculate the prediction of the click vector of step t+ 1,

x̂t+1. The prediction x̂t+1 takes the form of a J-dimensional vector, whose j-th element is

the probability of the consumer clicking product j. Specifically,

x̂t+1 =

[
exp(ot,1)∑J
j=1 exp(ot,j)

, · · · , exp(ot,J)∑J
j=1 exp(ot,j)

]′
(3.6)

ot = [ot,1, ot,2, ..., ot,J ]′ (3.7)

= V ht + bv, (3.8)

where V and bv are another set of matrix and vector of parameters to be learned.

Finally, we use the cross-entropy error as the loss function, which is defined as

L =
1

T − 1

T−1∑
t=1

xt+1 · log(x̂t+1). (3.9)

The full set of model parameters to be learned are

Θτ = {Wu, Uu, bu,Wr, Ur, br,Wh, Uh, bh, V, bv}. (3.10)

3.4 Application: Click-stream Prediction

We apply the FL algorithm to a click-stream dataset from an online retailer, and train the

GRU locally at each consumer’s node using only that consumer’s personal data. Our goal is
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Table 3.1: Summary Statistics of Training Dataset

Training Set
Mean SD Med Min Max

Number of sessions per customer 1.89 2.55 1 1 52
Number of clicks per customer 28.43 137.89 9 2 7,332
Number of clicks per session 15.03 49.68 5 2 1,844
Number of unique products clicked per customer 6.34 9.85 4 1 217
Number of unique products clicked per session 4.40 4.55 3 1 88
Number of customers 3,632
Number of sessions 6,873
Number of clicks 103,270

to show how the FL algorithm can fit into a broad marketing framework. In particular, we

combine the FL with the GRU to test the performance of the prediction of each consumer’s

click-stream within a browsing session. As discussed in Hidasi et al (2016), the prediction

of the next-clicked product or a set of products in a customer’s click-stream often become

the basis for a website’s recommendation system. A well-calibrated recommendation system

in turn may enhance the conversion rate of the online retailer. Consequently, accurately

predicting a consumer’s click-stream within a browsing session has substantial managerial

implications. To evaluate the accuracy of the prediction, we focus on the predicted probability

on the next-clicked product. In particular, we use “Recall@K” averaged over all clicks of all

consumers as our evaluation metric of prediction accuracy. Recall@K is widely used in the

machine learning literature for predicting click-through rates (Hidasi and Tikk (2016)). For

our application, the consumer clicks on only one product at each step. In this case, Recall@K

is a dummy variable. More specifically, for a given prediction at step t, Recall@K equals 1

if the list of K products with the highest predicted click probabilities includes the product

that the consumer actually clicks. Recall@K equals 0 if the actually clicked product does not

appear in the K-product list.
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Table 3.2: Summary Statistics of Test Dataset

Test Set
Mean SD Med Min Max

Number of sessions per customer 1.85 2.12 1 1 28
Number of clicks per customer 26.93 73.44 9 2 1,212
Number of clicks per session 14.58 42.35 5 2 1,008
Number of unique products clicked per customer 6.47 8.91 4 1 125
Number of unique products clicked per session 4.39 4.23 3 1 43
Number of customers 908
Number of sessions 1,677
Number of clicks 24,454

We use a dataset from a large Chinese online liquor retailer, which contains a set of 5,711

randomly selected customers shopping in the wine category on the website during July 2016.

For each customer, we observe her individual-level click-stream at the website. During the

observation window, these 5,711 customers initiate 13,154 browsing sessions on the website.80

During these sessions, they make 132,328 clicks on 1,660 products.

On average, each product appears in approximately 275 sessions, but with a large variance.

Some unpopular products only appear once in browsing sessions across customers, while

the most popular product appears in 1,177 sessions. We aggregate unpopular products that

appear in less than five sessions into one composite good. There are 798 such products,

and they constitute only 2.04% of total clicks in the data. We also drop sessions in which

a customer makes only one click, because our objective is to predict the next-clicked item

during the browsing session. As a result, we lose 4,604 observations (clicks) after dropping

those sessions.

Our final sample consists of 127,724 clicks, 4,540 customers, 8,550 sessions, and 863 products

(862 products and one composite good). On average, we have 1.89 sessions per customer,
80A session ends when the customer closes the website’s browser window/tab.
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each session consists of 15 clicks, each customer has 28 clicks, and each customer clicks on 4.1

unique products per session and 6.37 unique products in total.

We randomly select 80% of unique customers for training and use the remaining 20% as a test

set to calibrate the out-of-sample prediction accuracy. Our training dataset contains 103,270

clicks, 3,632 customers, and 6,873 sessions. Our testing data consist of 24,454 clicks, 908

customers, and 1,677 sessions. Note that due to our random assignment of consumers into

training/test sets, the total number of unique products clicked vary across the two groups of

consumers, even though they face the same set of alternative products. Summary statistics

of the training set and the test set are reported in Table 3.1 and Table 3.2, respectively.

Each shopping session of a consumer forms a separate sequence. That is, if any of the

consumer’s sessions ends, we reset the appropriate hidden state. We fix the size of the

hidden states to 100 and let each session of a consumer constitute a minibatch (6,783

sessions/minibatches in total in the training set). The full model has 376,363 parameters to

learn. For optimization of the loss function, we use the Adam algorithm with squared-root

decay of learning rates.81 To establish a benchmark, we also train and test the GRU using

the centralized learning approach, that is, standard stochastic gradient descent on the full

training set, where we use the same train/test split as in the FL setting, again with each

session forming a minibatch. For computational efficiency, we choose C = 0.2; that is, 20% of

randomly selected consumers work independently during each communication round. We

also show the results obtained from setting C = 0.1 for comparison. We also vary the level of

E, the number of local training epochs on each consumer’s device using her local data before

communicating to the central server.
81For centralized learning, we set the learning rate η to 3× 1e− 4. For FL, η is set to 5 when the sampling

rate C = 0.2 and the number of local training epoch E = 1; η is set to 3.3 when C = 0.2 and E = 2; η is set
to 1.2 when C = 0.1 and E = 1. We trained over a wide range of learning rates, and these performed the
best in terms of speed of convergence.
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Table 3.3: Prediction Accuracy and Communication Rounds

Model C E Recall@1 Communication rounds
Centralized Learning-GRU - - 0.60 -
Federated Learning-GRU 0.1 1 0.43 8,287
Federated Learning-GRU 0.2 1 0.53 555
Federated Learning-GRU 0.2 2 0.52 620

Table 3.3 reports the out-of-sample prediction accuracy as measured by Recall@1 averaged

over all predicted clicks. We present the prediction accuracy levels for FL-GRU with various

sampling rate C and local training epoch E. We also report the prediction accuracy obtained

through the centralized learning approach as a baseline. When the sampling rate C = 0.2

and local training epoch E = 1, the FL achieves a prediction accuracy of 53%. That is,

when we train the GRU using the FL approach, with 53% probability, the product with the

highest predicted click probability is the actual product the consumer has clicked (out of 863

alternative products). The prediction accuracy obtained via the FL approach is comparable

to that of the centralized approach, with the FL approach achieving 88% of the baseline

prediction accuracy of the centralized approach.82 We want to emphasize that with the FL

approach, the central server/firm has never stored, accessed, or directly analyzed individual

consumer data. Hence, the accuracy level of the FL is fairly impressive.

Computational costs are minimal in the FL setting because the size of the dataset stored in any

single device is small while modern devices have fast processors. By contrast, communication

costs are of major concern in distributed optimization settings such as the FL, because

information needs to be passed back and forth between the nodes and the central server

during the model optimization. In particular, limited upload bandwidth, network connection

(3G, 4G, WiFi), and power plug-ins (battery) hinder unlimited communication. McMahan et

al (2017) show the following two elements of the FL may substantially reduce the number of

communication rounds necessary for convergence:
82i.e., 0.53/0.60 = 0.88.
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Figure 3.1: Test Accuracy for (i) C = 0.1, E = 1, (ii) C = 0.2, E = 1, and (iii) C = 0.2, E = 2.
Plot for C = 0.1, E = 1 is only shown up to 2,000 communication rounds in order to compare
the communication efficiency with the baseline of C = 0.2

1. Increasing parallelism by increasing sampling rate: More consumers do computation

independently during each communication round, and

2. Increasing computation at each consumer’s node: Multiple updates are performed at

the consumer level during each communication round.

We report in Table 3.3 the minimum number of communication rounds necessary to achieve

a target accuracy of 40%. Figure 3.1 shows the learning curves, where the horizontal

line represents the target 40% accuracy level. The target accuracy is reached after 8, 287

communication rounds when C = 0.1, E = 1. Increasing parallelism by setting C to 0.2 while
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maintaining E = 1 drastically reduces the number of rounds to only 555.83 This figure also

includes results for C = 0.2, E = 2, which performs slightly worse than E = 1.84

3.5 Conclusion

Massive amounts of data generated by consumers provide a wealth of opportunities for firms

to accurately predict consumer behavior and to target and provide customized services,

thereby improving profitability as well as enhancing consumer experience. However, the

rapid growth of the use of consumer data, along with recent data-breach incidents, has raised

concerns regarding the protection of consumers’ privacy. Governments in several countries are

introducing regulations that greatly restrict firms’ access, use, and sharing of consumer data.

These regulations greatly restrict business activities of firms that rely heavily on consumer

data for their business activities. Therefore, firms must find solutions to mitigate the impact

of restrictive privacy regulations while keeping consumers’ private data safe.

In this paper, we show how machine learning approaches allow firms to continue benefiting from

vast amounts of consumer data without compromising consumers’ privacy. Specifically, we

discuss a recently developed FL approach, which uses a parallelized deep learning algorithm to

train a model locally on each individual consumer’s device. As an instantiation to demonstrate

the applicability of this approach in a marketing setting, we build a session-based GRU

recurrent neural network that predicts each consumer’s click-stream under the FL framework.

We show the prediction accuracy of the trained neural network via the FL approach is
83For the centralized learning, the GRU is trained on the full training set. The model parameters are

updated iteratively and sequentially for each minibatch (i.e., simple stochastic gradient descent). For the
centralized learning to achieve the 40% accuracy, 440 training epochs are necessary. One interesting analogy
about communication is that if each minibatch update is counted as a communication round, the total number
of communication rounds is 440 × 6, 873 = 3, 024, 120. This number is much higher than the 555 rounds
needed for the FL approach, implying a substantial computational burden.

84As discussed in section 3.3, increasing local training epochs may not necessarily enhance communication
efficiency. In et al (2017), the authors draw the same conclusion.
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comparable to that of the benchmark centralized approach. Through this application, we

demonstrate how firms can continue targeting consumers with a high level of accuracy without

having to store, access, or analyze consumer data in centralized locations, thereby preserving

consumers’ sensitive information.
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Appendix A

Hospital-level raw mortality rates do not correctly reflect the true quality of clinical care due

to differences in patients’ health status across hospitals (referred to as hospital’s “case-mix”)

i.e., hospitals with a larger number of sicker patients are more likely to have higher mortality

rates. It is therefore essential to take into account differences in patient case-mix across

hospitals, especially since we are using patients undergoing various types of different surgeries.

Specifically, we include the following hospital-level case-mix as control variables: Above70

(fraction of patients older than 70 years of age), SurgeryRisk (average deathrate of all surgeries

conducted in each hospital, where deathrate of a surgery is calculate as the death rate of

each surgery over our entire sample), DiseaseRisk (average deathrate of patients’ diagnosed

disease, where deathrate of a disease is calculate as the death rate of each disease over

our entire sample), ComorbidityRisk (average deathrate of patients’ diagnosed comorbidity,

where deathrate of a comorbidity is calculate as the death rate of each comorbidity over our

entire sample. If a patient does not have a comorbidity, this variable equals 0), DisabledFrac

(fraction of patients with a kidney and other dysfunction), DisabilitySeverity (severity of

disability, 1 mild, 2 severe), LowIncomeFrac (fraction of patients with low income).85

85In the data there are various categories of disabilities, such as intelectual disorder, mental
disorder, hearing disability, etc. Since some of these disabilities are not likely to affect the mortality
of a patient, we only consider Kidney Dysfunction and “Other Dysfuction”. Other dysfunction
includes (but does not distinguish between) speech disability, austistic disorder, cardiac dysfunction,
respiratory dysfunction, liver dysfunction, facial disfigurement, intestinal fistular/urinary fistular.
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Table A.1 reports the Diff-in-Diff estimates of the impact of competition on raw mortality rates

controlling for hospital-level case mix. As expected, hospitals with more riskier diseases, riskier

comorbidities, and more severe disabilities have higher mortality rates. Income and Age do not seem

to affect hospital level mortality rates. After controlling for DisabilitySeverity, the coefficient on

Disabled becomes negative. In Table A.2 we check the robustness of our results using only a subset

of the control variables. Our results remain unchanged.

Although speech disability and autism may be unrelated to deathrate, we are not able to distinguish
these disabilities from more critical ones such as cardiac and liver dysfunction.
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Appendix B

We want to use 30-day mortality following a surgery as our measure of hospital quality as it

is the most commonly used outcome-based measure. However, we do not observe the exact

date of the surgery in our data. To complicate matters further, we only observe the year and

month of patients’ death instead of the exact date. Therefore our (proxy) measure of 30-day

mortality rate is obtained as follows: We construct a dummy variable M whose element

µi takes value 1 if (i) patient i who was admitted to hospital in month mmi day ddi and

year yyyyi dies either in month mmi and year yyyyi or in month mmi + 1 and year yyyyi

for mmi = 1, ...11 and (ii) length of hospital-stay does not exceed 30 days. If patient was

admitted to hospital in mmi = 12 and year yyyyi, µi takes value 1 if patient dies in month

mmi and year yyyyi or in Janurary of year yyyyi + 1.

We then use this mortality dummy variable M to obtain the case-mix adjusted mortality rate

by estimating the following linear probability model pooled across both pre- and post-HST

periods:

M = Cψ +Hγ + (S + η) (B.1)

where M is a vector of dummy variable whose elements are switched on if a patient died. C

is a matrix of hospital-time period dummy variables, and H and S are patients’ observed
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and unobserved health status, respectively.86 The estimated hospital fixed effects parameter,

ψ, is the case-mix adjusted mortality rate that will be used in our difference-in-differences

estimation as well as in our structural model of hospital choice. The corresponding expression

for an individual observation is as follows:

µit = ψ
′
ci + γ

′
hi + sit + ηit

Following Gaynor et al (2013) hospital dummies are stacked in a block-diagonal matrix where

each block represents each period. Along with patients’ observed case-mix, the data are

arranged as

X =

Cpre Hpre

Cpost Hpost


where all elements in the matrix other than Ct and Ht are equal to zero. Ct is given by

Ct =


ct11 . . . ct1J−1

... . . . ...

ctnt1 . . . ctntJ−1


where nt is the number of patients in period t, and the elements ctij takes value one if patient

i chooses hospital j among J alternatives in period t, and zero otherwise.

Allowing the hospital fixed effects to vary for each period, we need to instrument (2 · J − 1)

hospital choice dummies for each period, requiring us of at least as many number of instruments.
86In patient characteristics matrix H, we include female dummy, age, income group, riskiness of the

patient’s surgery, riskiness of the patient’s disease, riskiness of the patient’s comorbidity and a disability
dummy variable.
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We use travel time to each of the J hospitals and additional J set of a dummy variables

which equals 1 if a given hospital is the closest one to the patient, which gives us a total of

2 · J instruments for each period. Specifically, we define travel time for patient i to hospital j

in period t as

TravelTimeijt =


min(cartimeij, traintimeij) if i lives in treated region in t = post

cartimeij otherwise

The matrix of instrumental variables is constructed as

Z =

Zpre Hpre

Zpost Hpost


where Zt is a matrix of 2 · J instruments which is given by

Zt =


zt11 . . . zt1K
... . . . ...

ztnt1 . . . ztntK


and K = 2 · J denotes the number of instruments.

Formal specification tests for the validity of our instruments are provided in Table B.1.

Our overidentifying restrictions are valid as we fail to reject the null of the Sargan-Hansen

overidentification test. We reject the null hypothesis of the Hausman Endogeneity test

which means that our OLS and IV estimates are statistically different. We also perform the

Wald-Test of Weak Instruments and reject the hypothesis that our instruments are weak.

These tests provide support for the validity of our IV specification.
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In Table B.2 we report the estimates of the effect of patients’ observed case-mix on patient

mortality from OLS and IV methods.

Sargan-Hansen χ2 274.0181
Overidentification Test P-value 0.9936

Hausman χ2 3,068
Endogeneity Test P-value 0.0001
Wald-Test of χ2 31,610

Weak Instruments P-value 0.0001

Table B.1: Tests for Validity of Instruments
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Table B.2: Estimates of the effect of patient characteristics on mortality from OLS and IV
methods (standard errors in parentheses)

OLS Coefficients IV Coefficients
Female 0.003** 0.002

(0.001) (0.003)
MediumIncome 0.008*** 0.009**

(0.002) (0.004)
HighIncome 0.007*** 0.006

(0.002) (0.004)
Age[20-40) -0.002*** -0.003

(0.002) (0.004)
Age[40-60) -0.011 -0.010**

(0.002) (0.004)
Age[60-80) 0.0064*** 0.008*

(0.002) (0.005)
Age[80+) 0.079*** 0.072***

(0.005) (0.010)
MainsickRisk 0.518*** 0.512***

(0.010) (0.020)
SubsickRisk 0.523*** 0.537***

(0.010) (0.017)
SurgeryRisk 0.383*** 0.382***

(0.005) (0.012)
Disabled -0.022*** -0.032***

(0.004) (0.008)
DisabilitySevere 0.003*** 0.006

(0.012 ) (0.016)
Notes: Models are estimated by OLS with standard errors (in parentheses under coefficients) robust to
arbitrary heteroskedasticity. All regressions include constants.
*** Significant at the 1 percent level; ** Significant at the 5 percent level;* Significant at the 10 percent
level.
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Appendix C
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Appendix D

Table D.1: Proportion of Patients who Traveled to arrive at Hospitals

Treated Hospitals Control Hospitals
Pre-HST Post-HST t-stat Pre-HST Post-HST t-stat

Patient Treatment: 10 miles
Control Patients 0.288 0.292 t:0.7130 0.073 0.076 t:0.8973

(0.453) (0.455) (0.260) (0.266)
N 7,202 8,065 p:0.4758 7,865 9,552 p:0.3696

Treated Patients 0.132 0.151 t:3.3867 0.335 0.376 t:1.2550
(0.338) (0.358) (0.473) (0.485)

N 7,202 8,065 p:0.0007 385 492 p:0.2098

Patient Treatment: 15 miles
Control Patients 0.478 0.476 t:0.2291 0.067 0.072 t:1.1415

(0.500) (0.500) (0.251) (0.258)
N 6,075 7,496 p:0.8188 7,487 9,084 p:0.2537

Treated Patients 0.110 0.120 t:2.0532 0.254 0.263 t:0.3915
(0.313) (0.324) (0.436) (0.440)

N 10,185 11,617 p:0.0401 713 880 p:0.2537

Notes: This table shows the changes in proportion of patients (excluding Seoul and surrounding area)
who traveled more than 50 miles to arrive at the hospitals. There is a significant increase in proportion
of treated patients traveling more than 50 miles to arrive at treated hospitas. Standard deviation in
parentheses.
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Appendix E
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Table E.5: Descriptive Evidence of Changes in Travel Distance (Patients that appear in both
periods)

Control Patients Treated Patients
Pre-HST Post-HST Pre-HST Post-HST

Distance Traveled Mean Mean %∆ Mean Mean ∆
(st.dev) (st.dev) (t-stat) (st.dev) (st.dev) ∆(t-stat)

Patients that appear in both periods (Patient Treatment: 15 miles)
Panel A. Distance Traveled (miles)

30.965 33.288 13.636 15.876
(42.155) (45.306) t:1.413 (35.687) (38.381) t:2.045

Nobs 1,333 1,530 p:0.1577 2,158 2,461 p:0.0409

Panel B. Traveled to arrive at treated hospitals

0.483 0.485 0.066 0.084
(0.500) (0.500) t:0.092 (0.249) (0.277) t:2.186

Nobs 605 742 p:0.9264 2,081 2,354 p:0.0289

Panel C. Traveled to arrive at control hospitals
0.074 0.086 0.260 0.318
(0.262) (0.281) t:0.866 (0.441) (0.468) t:0.850

Nobs 728 788 p:0.3865 77 107 p:0.3967

Notes: This table shows summary statistics for patients who appear in both, pre- and post-HST periods.
Patient treatment is defined as living within 15 miles of the HST station. Hospital treatment is defined
as being located within 15 mile of the HST station. Panel A shows changes in travel distance (miles)
in each period for treated and control patients. Panel B shows changes in proportion of patients that
arrived at the treated hospitals via traveling. Panel C shows the changes in proportion of patients that
arrived at the control hospitals via traveling.
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Appendix F

Table F.1: Randomization Check-Men

Men
Control Treatment

Variable Mean SD Mean SD t-stat p-value
Age 31.317 9.572 31.281 9.651 0.239 0.811
HighSchool 0.126 0.332 0.127 0.333 -0.112 0.911
TwoYear 0.184 0.388 0.185 0.388 -0.064 0.949
University 0.550 0.498 0.531 0.499 1.367 0.172
PostGrad 0.140 0.347 0.157 0.364 -1.741 0.082
Skinny 0.141 0.348 0.144 0.007 -0.267 0.789
Average 0.674 0.469 0.662 0.473 0.853 0.394
LittleExtra 0.152 0.359 0.156 0.363 -0.366 0.714
Overweight 0.032 0.177 0.038 0.190 -0.956 0.339
Asian 0.099 0.298 0.095 0.293 0.526 0.599
White 0.634 0.482 0.617 0.486 1.514 0.130
Black 0.096 0.295 0.102 0.303 -0.866 0.387
Indian 0.043 0.204 0.042 0.201 0.258 0.797
MidEastern 0.024 0.153 0.026 0.160 -0.652 0.514
Hispanic 0.119 0.324 0.123 0.328 -0.518 0.604
NativeAmerican 0.025 0.156 0.022 0.148 0.767 0.443
PacificIslander 0.012 0.111 0.012 0.110 0.061 0.952
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Table F.2: Randomization Check-Women

Women
Control Treatment

Variable Mean SD Mean SD t-stat p-value
Age 34.065 11.377 33.855 11.236 0.784 0.433
HighSchool 0.098 0.298 0.085 0.280 1.113 0.266
TwoYear 0.161 0.368 0.153 0.360 0.521 0.602
University 0.562 0.496 0.577 0.494 -0.749 0.451
PostGrad 0.179 0.383 0.185 0.388 -0.364 0.716
Skinny 0.264 0.441 0.238 0.426 1.209 0.227
Average 0.539 0.499 0.537 0.499 0.052 0.959
LittleExtra 0.147 0.354 0.174 0.379 -1.503 0.133
Overweight 0.050 0.220 0.051 0.220 0.010 0.992
Asian 0.136 0.343 0.159 0.365 -1.924 0.054
White 0.594 0.491 0.584 0.493 0.649 0.516
Black 0.096 0.295 0.102 0.303 -0.866 0.387
Indian 0.013 0.114 0.018 0.133 -1.216 0.224
MidEastern 0.008 0.089 0.008 0.089 -0.007 0.995
Hispanic 0.123 0.328 0.125 0.331 -0.201 0.841
NativeAmerican 0.020 0.142 0.022 0.148 -0.390 0.697
PacificIslander 0.012 0.111 0.012 0.110 0.061 0.952
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Appendix G

Table G.1: User Acitivites (All correspondent users)

Men Women
control treated t-stat control treated t-stat
(1a) (1b) (1c) (2a) (2b) (2c)

Number of users 7,930 8,189 3,470 3,642
Profiles Browsed
Mean 259.4 250.4 -0.894 190.7 210.6 1.385
Median 59 58 27 31
SD 641.8 627.4 567.1 639.9
Profiles viewed
Mean 84.1 84.7 0.190 39.8 46.6 3.630
Median 24 26 15 17
SD 186.0 180.8 69.9 86.5
Likes sent
Mean 95.6 83.9 -2.334 15.3 17.2 1.0338
Median 9 10 1 1
SD 341.3 292.4 80.1 75.3
Initiated messages
Mean 22.4 22.4 -0.058 3.1 3.3 0.860
Median 3 3 1 1
SD 69.5 70.5 9.2 9.6
Initiated Messages that led to match
Mean 1.6 1.7 0.891 0.7 0.8 1.789
Median 0 0 0 0
SD 5.1 5.3 2.2 2.5
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Men Women

control treated t-stat control treated t-stat

(1a) (1b) (1c) (2a) (2b) (2c)

Number of users 7,930 8,189 3,470 3,642

Profiles Browsed

Mean 259.4 250.4 -0.894 190.7 210.6 1.385

Median 59 58 27 31

SD 641.8 627.4 567.1 639.9

Profiles viewed

Mean 84.1 84.7 0.190 39.8 46.6 3.630

Median 24 26 15 17

SD 186.0 180.8 69.9 86.5

Likes sent

Mean 95.6 83.9 -2.334 15.3 17.2 1.0338

Median 9 10 1 1

SD 341.3 292.4 80.1 75.3

Initiated messages

Mean 22.4 22.4 -0.058 3.1 3.3 0.860

Median 3 3 1 1

SD 69.5 70.5 9.2 9.6

Initiated Messages that led to match

Mean 1.6 1.7 0.891 0.7 0.8 1.789

Median 0 0 0 0

SD 5.1 5.3 2.2 2.5
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